CC BY 4.0 · Arq Neuropsiquiatr 2023; 81(04): 357-368
DOI: 10.1055/s-0043-1768698
Original Article

Molecular mimicry between Zika virus and central nervous system inflammatory demyelinating disorders: the role of NS5 Zika virus epitope and PLP autoantigens

Mimetismo molecular entre o vírus Zika e os distúrbios inflamatórios desmielinizantes do sistema nervoso central: o papel do epítopo NS5 do vírus Zika e dos autoantígenos PLP
1   Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-Graduação em Neurologia, Laboratório de Neurociências Translacional, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-Graduação em Neurologia, Laboratório de Neurociências Translacional, Rio de Janeiro RJ, Brazil.
2   Universidade do Estado do Rio de Janeiro, Departamento de Farmacologia e Psicobiologia, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-Graduação em Neurologia, Laboratório de Neurociências Translacional, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-Graduação em Neurologia, Laboratório de Neurociências Translacional, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-Graduação em Neurologia, Laboratório de Neurociências Translacional, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-Graduação em Neurologia, Laboratório de Neurociências Translacional, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-Graduação em Neurologia, Laboratório de Neurociências Translacional, Rio de Janeiro RJ, Brazil.
,
3   Universidade Federal Fluminense, Hospital Universitário Antônio Pedro, Departamento de Neurologia, Niterói RJ, Brazil.
,
4   Universidade Federal Fluminense, Hospital Universitário Antônio Pedro, Departamento de Radiologia, Niterói RJ, Brazil.
,
4   Universidade Federal Fluminense, Hospital Universitário Antônio Pedro, Departamento de Radiologia, Niterói RJ, Brazil.
,
4   Universidade Federal Fluminense, Hospital Universitário Antônio Pedro, Departamento de Radiologia, Niterói RJ, Brazil.
,
5   Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Genética, Rio de Janeiro RJ, Brazil.
,
6   Hospital São Francisco na Providência de Deus, Departamento de Neurologia, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-Graduação em Neurologia, Laboratório de Neurociências Translacional, Rio de Janeiro RJ, Brazil.
7   Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Departamento de Neurocirurgia, Rio de Janeiro RJ, Brazil.
,
8   Universidade Federal do Estado do Rio de Janeiro, Departamento de Genética e Biologia Molecular, Grupo de Bioinformática e Biologia Computacional, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Estado do Rio de Janeiro, Programa de Pós-Graduação em Neurologia, Laboratório de Neurociências Translacional, Rio de Janeiro RJ, Brazil.
9   Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Centro de Referência e Pesquisa em Esclerose Múltipla e Outras Doenças Desmielinizantes Inflamatórias Idiopáticas do SNC, Rio de Janeiro RJ, Brazil.
› Institutsangaben

Abstract

Background Evidence indicates a strong link between Zika virus (ZikV) and neurological complications. Acute myelitis, optic neuritis, polyneuropathy, and encephalomyelitis that mimic inflammatory idiopathic demyelination disorders (IIDD) after ZikV infection have been reported in Brazil.

Objective The present study aims to investigate the possible occurrence of molecular mimicry between ZikV antigens and Multiple Sclerosis (MS) autoantigens, the most frequent IIDD of the central nervous system (CNS).

Methods A retrospective cohort study with 305 patients admitted due to suspected arbovirus infection in Rio de Janeiro was performed, all subjects were submitted to neurological examination, and a biological sample was collected for serologic and molecular diagnostic. Bioinformatics tools were used to analyze the peptides shared between ZikV antigens and MS autoantigens.

Results Of 305 patients, twenty-six were positive for ZikV and 4 presented IDD patterns found in MS cases. Sequence homology comparisons by bioinformatics approach between NS5 ZikV and PLP MS protein revealed a homology of 5/6 consecutive amino acids (CSSVPV/CSAVPV) with 83% identity, deducing a molecular mimicry. Analysis of the 3D structures revealed a similar conformation with alpha helix presentation.

Conclusions Molecular mimicry between NS5 Zika virus antigen and PLP MS autoantigens emerge as a possible mechanism for IDD spectrum in genetically susceptible individuals.

Resumo

Antecedentes Evidências indicam uma forte ligação entre o vírus Zika (ZikV) e complicações neurológicas. Mielite aguda, neurite óptica, polineuropatia e encefalomielite que mimetizam distúrbios inflamatórios de desmielinização idiopáticos (DDII) após infecção por ZikV têm sido relatadas no Brasil.

Obejtivo O presente estudo tem como objetivo investigar a possível ocorrência de mimetismo molecular entre antígenos do ZikV e autoantígenos da Esclerose Múltipla (EM), a DDII mais frequente do sistema nervoso central (SNC).

Métodos Foi realizado um estudo de coorte retrospectivo com 305 pacientes internados por suspeita de infecção por arbovírus no Rio de Janeiro, todos os indivíduos foram submetidos a exame neurológico e coleta de amostra biológica para diagnóstico sorológico e molecular. Ferramentas de bioinformática foram usadas para analisar os peptídeos compartilhados entre antígenos do ZikV e autoantígenos da EM.

Resultados Dos 305 pacientes, vinte e seis foram positivos para ZikV e 4 apresentaram padrão IDD encontrado em casos de EM. As comparações de homologia de sequência por abordagem de bioinformática entre a proteína NS5 ZikV e PLP EM revelaram uma homologia de 5/6 aminoácidos consecutivos (CSSVPV/CSAVPV) com 83% de identidade, deduzindo um mimetismo molecular. A análise das estruturas 3D revelou uma conformação semelhante com apresentação em alfa-hélice.

Conclusões O mimetismo molecular entre o antígeno NS5 do vírus Zika e o autoantígeno PLP da EM surge como um possível mecanismo para o espectro IDD em indivíduos geneticamente suscetíveis.

Authors' Contributions

SVAL, FLFD: conceived and designed the experiments; SVAL, FLFD, LCF, DGG, ADA, JPCG, CCSR, EVS, OJMN, FCRL, FFAF, JPBMS: subject recruitment and collection of the samples; ALH, RSA, OCFJ: serology and molecular diagnostic; FLFD, LCF, JFM: performing bioinformatics analyzes; LCF, FLFD, SVAL: analyzed the data and drafted the manuscript; LCF, FLFD: contributed equally to this work. All authors read and approved the final version.


Support

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Brazilian National Council for Scientific and Technological Development (CNPq Number 440779/2016-2), Coordination for the Improvement of Higher Education Personnel (CAPES Number 88887.130752/2016-00), Department of Science and Technology (DECIT No. 14/2016), Rede Nacional de Especialistas em ZIKA e Doenças Correlatas (RENEZIKA) and Foundation for Rio de Janeiro State Research (FAPERJ).




Publikationsverlauf

Eingereicht: 09. Mai 2022

Angenommen: 16. Dezember 2022

Artikel online veröffentlicht:
09. Mai 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D. An update on Zika virus infection. Lancet 2017;390(10107):2099–2109. Doi: 10.1016/S0140-6736(17)31450-2 [Internet]
  • 2 Galliez RM, Spitz M, Rafful PP. et al. Zika virus causing encephalomyelitis associated with immunoactivation. Open Forum Infect Dis 2016; 3 (04) ofw203
  • 3 Mlakar J, Korva M, Tul N. et al. Zika Virus Associated with Microcephaly. N Engl J Med 2016; 374 (10) 951-958 [Internet]
  • 4 Singh S, Kumar A. Ocular Manifestations of Emerging Flaviviruses and the Blood-Retinal Barrier. Viruses 2018; 10 (10) 1-20
  • 5 Aspahan MC, Leonhard SE, Gomez RS, Rocha Eda S, Vilela Mda S, Alvarenga PPM. et al. Neuromyelitis optica spectrum disorder associated with Zika virus infection. Vol. 9, Neurology. Clinical practice. United States;. 2019.p.e1–3; Available from: https://doi.org/10.1212/CPJ.0000000000000546
  • 6 Alves-Leon SV, Lima MDR, Nunes PCG. et al. Zika virus found in brain tissue of a multiple sclerosis patient undergoing an acute disseminated encephalomyelitis-like episode. Mult Scler 2019; 25 (03) 427-430
  • 7 Platt DJ, Smith AM, Arora N, Diamond MS, Coyne CB, Miner JJ. Zika virus-related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. Sci Transl Med 2018; 10 (426) eaao7090 [Internet]
  • 8 Wen J, Shresta S. T Cell Immunity to Zika and Dengue Viral Infections. J Interferon Cytokine Res 2017; 37 (11) 475-479
  • 9 Monsalve DM, Pacheco Y, Acosta-ampudia Y, Rodríguez Y, Ramírez-santana C. Zika virus and autoimmunity. One-step forward. Autoimmun Rev [Internet]. 2017;17(S1568-9972):30258–6 Available from: https://doi.org/10.1016/j.autrev.2017.10.008
  • 10 Lucchese G, Kanduc D. Zika virus and autoimmunity: From microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun Rev 2016; 15 (08) 801-808 [Internet]
  • 11 Zare Mehrjardi M, Keshavarz E, Poretti A, Hazin AN. Neuroimaging findings of Zika virus infection: a review article. Jpn J Radiol 2016; 34 (12) 765-770
  • 12 Neri VC, Xavier MF, Barros PO, Melo Bento C, Marignier R, Papais Alvarenga R. Case Report: Acute Transverse Myelitis after Zika Virus Infection. Am J Trop Med Hyg 2018; 99 (06) 1419-1421
  • 13 Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet 2018;391(10130):1622–1636. Doi: 10.1016/S0140-6736(18)30481-1 [Internet]
  • 14 Huynh JL, Casaccia P. Epigenetic mechanisms in multiple sclerosis: implications for pathogenesis and treatment. Lancet Neurol 2013; 12 (02) 195-206
  • 15 Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 2014; 122: 173-189
  • 16 Waubant E, Ponsonby AL, Pugliatti M, Hanwell H, Mowry EM, Hintzen RQ. Environmental and genetic factors in pediatric inflammatory demyelinating diseases. Neurology 2016; 87 (9, Suppl 2) S20-S27
  • 17 Oldstone MB. Molecular mimicry and immune-mediated diseases. FASEB J 1998; 12 (13) 1255-1265
  • 18 Reddy V, Desai A, Krishna SS, Vasanthapuram R. Molecular Mimicry between Chikungunya Virus and Host Components: A Possible Mechanism for the Arthritic Manifestations. PLoS Negl Trop Dis 2017; 11 (01) e0005238
  • 19 Lin Y-S, Yeh T-M, Lin C-F. et al. Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med (Maywood) 2011; 236 (05) 515-523
  • 20 NG. I. H. W. et al. Zika Virus NS5 Forms Supramolecular Nuclear Bodies That Sequester Importin-α and Modulate the Host Immune and Pro-Inflammatory Response in Neuronal Cells. ACS Infectious Diseases, v. 5, n. 6, p. 932–948, 2019. Available from: https://doi.org/10.1021/acsinfecdis.8b00373
  • 21 Shi Y, Gao GF. Structural Biology of the Zika Virus. Trends Biochem Sci 2017; 42 (06) 443-456
  • 22 Meltzer E, Leshem E, Lustig Y, Gottesman G, Schwartz E. The Clinical Spectrum of Zika Virus in Returning Travelers. Am J Med 2016; 129 (10) 1126-1130 [Internet]
  • 23 Beckham JD, Pastula DM, Massey A, Tyler KL. Zika virus as an emerging global pathogen: Neurological complications of zika virus. JAMA Neurol 2016; 73 (07) 875-879
  • 24 Román GC, Anaya J-M, Mancera-Páez Ó, Pardo-Turriago R, Rodríguez Y. Concurrent Guillain-Barré syndrome, transverse myelitis and encephalitis post-Zika: A case report and review of the pathogenic role of multiple arboviral immunity. J Neurol Sci 2019; 396: 84-85 [Internet]
  • 25 Mirza MU, Rafique S, Ali A. et al. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Sci Rep 2016; 6 (July): 37313
  • 26 Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005; 33 (07) 2302-2309
  • 27 Zhao B, Yi G, Du F. et al. Structure and function of the Zika virus full-length NS5 protein. Nat Commun 2017; 8: 14762 [Internet]
  • 28 Shao Q, Herrlinger S, Zhu Y-N, Yang M, Goodfellow F, Stice SL. et al. The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian lineage and dengue virus. Development [Internet]. 2017/10/09. 2017 Nov 15;144(22):4114–24. Available from: https://doi.org/10.1242/dev.156752
  • 29 Tripathi S, Balasubramaniam VRMT, Brown JA, Mena I, Grant A. Bardina S V, et al. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. Plos. 2017;1–19. Available from: https://doi.org/10.1371/journal.ppat.1006258
  • 30 EZV. Li G, Bos S, Tsetsarkin KA, Pletnev AG, Despr P, et al. The Roles of prM-E Proteins in Historical and Epidemic Zika Virus-Mediated Infection and Neurocytotoxicity. Viruses MDPI. 2019 Feb; 11(2): 157. Available from: https://doi.org/10.3390/v11020157
  • 31 Greer JM. Autoimmune T-cell reactivity to myelin proteolipids and glycolipids in multiple sclerosis. Mult Scler Int 2013; 2013: 151427
  • 32 Zamanzadeh Z, Ataei M, Nabavi SM, Ahangari G, Sadeghi M. In Silico Perspectives on the Prediction of the PLP ' s Epitopes involved in Multiple Sclerosis. Natl Inst Genet Eng Biotechnol [Internet]. 2017;15(1):10–21. Available from: http://dx.doi.org/10.15171/ijb.1356
  • 33 Wang B, Tan XF, Thurmond S. et al. The structure of Zika virus NS5 reveals a conserved domain conformation. Nat Commun 2017; 8: 14763 [Internet]
  • 34 Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol 2017; 133 (01) 13-24
  • 35 Svejgaard A. The immunogenetics of multiple sclerosis. Immunogenetics 2008; 60 (06) 275-286
  • 36 Alves-Leon SV, Papais-Alvarenga R, Magalhães M, Alvarenga M, Thuler LCS, Fernández y Fernandez O. Ethnicity-dependent association of HLA DRB1-DQA1-DQB1 alleles in Brazilian multiple sclerosis patients. Acta Neurol Scand 2007; 115 (05) 306-311
  • 37 Mangalam AK, Khare M, Krco C, Rodriguez M, David C. Identification of T cell epitopes on human proteolipid protein and induction of experimental autoimmune encephalomyelitis in HLA class II-transgenic mice. Eur J Immunol 2004; 34 (01) 280-290
  • 38 Rich C, Link JM, Zamora A. et al. Myelin oligodendrocyte glycoprotein-35-55 peptide induces severe chronic experimental autoimmune encephalomyelitis in HLA-DR2-transgenic mice. Eur J Immunol 2004; 34 (05) 1251-1261
  • 39 Kaushansky N, Altmann DM, David CS, Lassmann H, Ben-Nun A. DQB1*0602 rather than DRB1*1501 confers susceptibility to multiple sclerosis-like disease induced by proteolipid protein (PLP). J Neuroinflammation 2012; 9 (01) 29
  • 40 Bielekova B, Sung M-H, Kadom N, Simon R, McFarland H, Martin R. Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J Immunol 2004; 172 (06) 3893-3904
  • 41 Greer JM, Csurhes PA, Muller DM, Pender MP. Correlation of blood T cell and antibody reactivity to myelin proteins with HLA type and lesion localization in multiple sclerosis. J Immunol 2008; 180 (09) 6402-6410