Facial Plast Surg 2023; 39(05): 477-488
DOI: 10.1055/s-0043-1769936
Original Article

Current and Future Developments in Wound Healing

Morgan Davis
1   Department of Otolaryngology, Head and Neck Surgery, University of California, San Diego, La Jolla, California
,
David Hom
1   Department of Otolaryngology, Head and Neck Surgery, University of California, San Diego, La Jolla, California
› Author Affiliations

Abstract

Poor wound healing on the face and neck can lead to significant morbidity and dissatisfaction in facial plastic surgery. With current advances in wound healing management and commercially available biologic and tissue-engineered products, there are several options available to optimize acute wound healing and treat delayed or chronic wounds. This article summarizes some of the key principals and recent developments in wound healing research in addition to potential future advancements in the field of soft tissue wound healing.



Publication History

Article published online:
12 June 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hom DB, Sun GH, Elluru RG. A contemporary review of wound healing in otolaryngology: current state and future promise. Laryngoscope 2009; 119 (11) 2099-2110
  • 2 Costa AMA, Peyrol S, Pôrto LC, Comparin J-P, Foyatier J-L, Desmoulière A. Mechanical forces induce scar remodeling. Study in non-pressure-treated versus pressure-treated hypertrophic scars. Am J Pathol 1999; 155 (05) 1671-1679
  • 3 O'Reilly S, Crofton E, Brown J, Strong J, Ziviani J. Use of tape for the management of hypertrophic scar development: a comprehensive review. Scars Burn Heal 2021; 7: 20 595131211029206
  • 4 Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 1962; 193 (4812): 293-294
  • 5 Nuutila K, Eriksson E. Moist wound healing with commonly available dressings. Adv Wound Care (New Rochelle) 2021; 10 (12) 685-698
  • 6 Meaume S, Le Pillouer-Prost A, Richert B, Roseeuw D, Vadoud J. Management of scars: updated practical guidelines and use of silicones. Eur J Dermatol 2014; 24 (04) 435-443
  • 7 Monstrey S, Middelkoop E, Vranckx JJ. et al. Updated scar management practical guidelines: non-invasive and invasive measures. J Plast Reconstr Aesthet Surg 2014; 67 (08) 1017-1025
  • 8 Khorasani G, Hosseinimehr SJ, Azadbakht M, Zamani A, Mahdavi MR. Aloe versus silver sulfadiazine creams for second-degree burns: a randomized controlled study. Surg Today 2009; 39 (07) 587-591
  • 9 Shahzad MN, Ahmed N. Effectiveness of aloe vera gel compared with 1% silver sulphadiazine cream as burn wound dressing in second degree burns. J Pak Med Assoc 2013; 63 (02) 225-230
  • 10 Visuthikosol V, Chowchuen B, Sukwanarat Y, Sriurairatana S, Boonpucknavig V. Effect of aloe vera gel to healing of burn wound a clinical and histologic study. J Med Assoc Thai 1995; 78 (08) 403-409
  • 11 Burusapat C, Supawan M, Pruksapong C, Pitiseree A, Suwantemee C. Topical aloe vera gel for accelerated wound healing of split-thickness skin graft donor sites: a double-blind, randomized, controlled trial and systematic review. Plast Reconstr Surg 2018; 142 (01) 217-226
  • 12 Basson R, Bayat A. Skin scarring: latest update on objective assessment and optimal management. Front Med (Lausanne) 2022; 9: 942756
  • 13 Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous scarring: basic science, current treatments, and future directions. Adv Wound Care (New Rochelle) 2018; 7 (02) 29-45
  • 14 Sidgwick GP, McGeorge D, Bayat A. A comprehensive evidence-based review on the role of topicals and dressings in the management of skin scarring. Arch Dermatol Res 2015; 307 (06) 461-477
  • 15 Atiyeh BS, Ioannovich J, Al-Amm CA, El-Musa KA, Dham R. Improving scar quality: a prospective clinical study. Aesthetic Plast Surg 2002; 26 (06) 470-476
  • 16 Atiyeh BS, Amm CA, El Musa KA. Improved scar quality following primary and secondary healing of cutaneous wounds. Aesthetic Plast Surg 2003; 27 (05) 411-417
  • 17 Son D, Harijan A. Overview of surgical scar prevention and management. J Korean Med Sci 2014; 29 (06) 751-757
  • 18 Kumar S, Gupta SH, Viswambaran M, Sachdeva A, Panda BP. Management of postburn perioral contracture using a customized static commissural splint and intralesional injections of triamcinolone. J Prosthet Dent 2018; 119 (03) 488-491
  • 19 Amici J-M. Hypertrophie cicatricielle précoce post-chirurgicale de la région nasale : intérêt des injections de corticoïde retard. Ann Dermatol Venereol 2014; 141 (01) 7-13
  • 20 Gassner HG, Sherris DA, Otley CC. Treatment of facial wounds with botulinum toxin A improves cosmetic outcome in primates. Plast Reconstr Surg 2000; 105 (06) 1948-1953 , discussion 1954–1955
  • 21 Ziade M, Domergue S, Batifol D. et al. Use of botulinum toxin type A to improve treatment of facial wounds: a prospective randomised study. J Plast Reconstr Aesthet Surg 2013; 66 (02) 209-214
  • 22 Shokri T, Smith J, Ducic Y. Paradigms in complex facial scar management. Semin Plast Surg 2020; 34 (04) 305-313
  • 23 Xiao Z, Zhang F, Lin W, Zhang M, Liu Y. Effect of botulinum toxin type A on transforming growth factor β1 in fibroblasts derived from hypertrophic scar: a preliminary report. Aesthetic Plast Surg 2010; 34 (04) 424-427
  • 24 Wang L, Tai N, Fan Z. Effect of botulinum toxin type A on the expression of substance P, calcitonin gene-related peptide, transforming growth factor beta-1 and alpha smooth muscle actin A in wound healing in rats [in Chinese]. Zhonghua Zheng Xing Wai Ke Za Zhi 2009; 25 (01) 50-53
  • 25 Xiao Z, Zhang F, Cui Z. Treatment of hypertrophic scars with intralesional botulinum toxin type A injections: a preliminary report. Aesthetic Plast Surg 2009; 33 (03) 409-412
  • 26 Farahani M, Shafiee A. Wound healing: from passive to smart dressings. Adv Healthc Mater 2021; 10 (16) e2100477
  • 27 Dhivya S, Padma VV, Santhini E. Wound dressings - a review. Biomedicine (Taipei) 2015; 5 (04) 22
  • 28 Zeng R, Lin C, Lin Z. et al. Approaches to cutaneous wound healing: basics and future directions. Cell Tissue Res 2018; 374 (02) 217-232
  • 29 Santamaria N, Gerdtz M, Sage S. et al. A randomised controlled trial of the effectiveness of soft silicone multi-layered foam dressings in the prevention of sacral and heel pressure ulcers in trauma and critically ill patients: the border trial. Int Wound J 2015; 12 (03) 302-308
  • 30 Lee J, Lee SW, Hong JP, Shon MW, Ryu S-H, Ahn SD. Foam dressing with epidermal growth factor for severe radiation dermatitis in head and neck cancer patients. Int Wound J 2016; 13 (03) 390-393
  • 31 Pang Q, Lou D, Li S. et al. Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv Sci (Weinh) 2020; 7 (06) 1902673
  • 32 Qiao B, Pang Q, Yuan P, Luo Y, Ma L. Smart wound dressing for infection monitoring and NIR-triggered antibacterial treatment. Biomater Sci 2020; 8 (06) 1649-1657
  • 33 Vithlani G, Santos Jorge P, Brizman E, Mitsimponas K. Integra® as a single-stage dermal regeneration template in reconstruction of large defects of the scalp. Br J Oral Maxillofac Surg 2017; 55 (08) 844-846
  • 34 Johnson MB, Wong AK. Integra-based reconstruction of large scalp wounds: a case report and systematic review of the literature. Plast Reconstr Surg Glob Open 2016; 4 (10) e1074
  • 35 Wirthmann A, Finke JC, Giovanoli P, Lindenblatt N. Long-term follow-up of donor site morbidity after defect coverage with Integra following radial forearm flap elevation. Eur J Plast Surg 2014; 37 (03) 159-166
  • 36 Seth AK, Ratanshi I, Dayan JH, Disa JJ, Mehrara BJ. Nasal reconstruction using the Integra dermal regeneration template. Plast Reconstr Surg 2019; 144 (04) 966-970
  • 37 Applebaum MA, Daggett JD, Carter WL. Nasal tip reconstruction using integra bilayer wound matrix: an alternative to the forehead flap. Eplasty 2015; 15: e52
  • 38 Depani M, Grush AE, Parham MJ, Jones LM, Thornton JF. Use of biologic agents in nasal and scalp reconstruction. Semin Plast Surg 2022; 36 (01) 17-25
  • 39 Srivastava A, Maniakas A, Myers J, Chambers MS, Cardoso R. Reconstruction of intraoral oncologic surgical defects with Integra® bilayer wound matrix. Clin Case Rep 2020; 9 (01) 213-219
  • 40 Deganello A, Bosio P, Giannini L. et al. Matrix for mucosal regeneration in transoral glossectomy for squamous cell carcinoma: objective and subjective functional evaluation. Curr Oncol 2023; 30 (02) 1354-1362
  • 41 Clark JM, Rychlik S, Harris J, Seikaly H, Biron VL, O'Connell DA. Donor site morbidity following radial forearm free flap reconstruction with split thickness skin grafts using negative pressure wound therapy. J Otolaryngol Head Neck Surg 2019; 48 (01) 21
  • 42 Avery C, Pereira J, Moody A, Whitworth I. Clinical experience with the negative pressure wound dressing. Br J Oral Maxillofac Surg 2000; 38 (04) 343-345
  • 43 Maleki Delarestaghi M, Ahmadi A, Dehghani Firouzabadi F, Roomiani M, Dehghani Firouzabadi M, Faham Z. Effect of low-pressure drainage suction on pharyngocutaneous fistula after total laryngectomy. Ann Otol Rhinol Laryngol 2021; 130 (01) 32-37
  • 44 Govea-Camacho LH, Astudillo-Carrera A, Hermosillo-Sandoval JM, Rodríguez-Reynoso S, González-Ojeda A, Fuentes-Orozco C. Impacto del manejo con cierre asistido al vacío en abscesos profundos de cuello. Cir Cir 2016; 84 (04) 275-281
  • 45 Asher SA, White HN, Golden JB, Magnuson JS, Carroll WR, Rosenthal EL. Negative pressure wound therapy in head and neck surgery. JAMA Facial Plast Surg 2014; 16 (02) 120-126
  • 46 Yamakawa S, Hayashida K. Advances in surgical applications of growth factors for wound healing. Burns Trauma 2019; 7: 10
  • 47 Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo-controlled double-blind study. Diabetes Care 1998; 21 (05) 822-827
  • 48 Hom DB. New developments in wound healing relevant to facial plastic surgery. Arch Facial Plast Surg 2008; 10 (06) 402-406
  • 49 Hom DB, Manivel JC. Promoting healing with recombinant human platelet-derived growth factor–BB in a previously irradiated problem wound. Laryngoscope 2003; 113 (09) 1566-1571
  • 50 Jakubowicz DM, Smith RV. Use of becaplermin in the closure of pharyngocutaneous fistulas. Head Neck 2005; 27 (05) 433-438
  • 51 Li F, Yu F, Liao X. et al. Efficacy of recombinant human BMP2 and PDGF-BB in orofacial bone regeneration: a systematic review and meta-analysis. Sci Rep 2019; 9 (01) 8073
  • 52 Bae YJ, Cho CH, Lee WJ, Huh JS, Lim JO. Optimization of recombinant human platelet-derived growth factor-BB encapsulated in Poly (lactic-co-glycolic acid) microspheres for applications in wound healing. Tissue Eng Regen Med 2016; 13 (01) 13-20
  • 53 Park JW, Hwang SR, Yoon I-S. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 2017; 22 (08) 1259
  • 54 Company O-M.. Regranex [Package Insert]; 2008. Accessed May 26, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/103691s5074lbl.pdf
  • 55 Guenou H, Nissan X, Larcher F. et al. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet 2009; 374 (9703): 1745-1753
  • 56 Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10 (01) 111
  • 57 Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res 2009; 12 (05) 359-366
  • 58 Zhou L, Wang H, Yao S, Li L, Kuang X. Efficacy of human adipose derived mesenchymal stem cells in promoting skin wound healing. J Healthc Eng 2022; 2022: 6590025
  • 59 Koh KS, Oh TS, Kim H. et al. Clinical application of human adipose tissue-derived mesenchymal stem cells in progressive hemifacial atrophy (Parry-Romberg disease) with microfat grafting techniques using 3-dimensional computed tomography and 3-dimensional camera. Ann Plast Surg 2012; 69 (03) 331-337
  • 60 Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 2008; 32 (01) 48-55 , discussion 56–57
  • 61 Sclafani AP, Azzi J. Platelet preparations for use in facial rejuvenation and wound healing: a critical review of current literature. Aesthetic Plast Surg 2015; 39 (04) 495-505
  • 62 Hom DB, Linzie BM, Huang TC. The healing effects of autologous platelet gel on acute human skin wounds. Arch Facial Plast Surg 2007; 9 (03) 174-183
  • 63 Qu W, Wang Z, Hunt C. et al. The effectiveness and safety of platelet-rich plasma for chronic wounds: a systematic review and meta-analysis. Mayo Clin Proc 2021; 96 (09) 2407-2417
  • 64 Carter MJ, Fylling CP, Parnell LKS. Use of platelet rich plasma gel on wound healing: a systematic review and meta-analysis. Eplasty 2011; 11: e38
  • 65 Reksodiputro MH, Hutauruk SM, Widodo DW, Fardizza F, Mutia D. Platelet-rich fibrin enhances surgical wound healing in total laryngectomy. Facial Plast Surg 2021; 37 (03) 325-332
  • 66 van der Woerd B, O'Dell K, Castellanos CX. et al. Safety of platelet-rich plasma subepithelial infusion for vocal fold scar, sulcus, and atrophy. Laryngoscope 2023; 133 (03) 647-653
  • 67 Woo P, Murry T. Short-term voice improvement after repeated office-based platelet-rich plasma PRP injection in patients with vocal fold scar, sulcus, and atrophy. J Voice 2021; S0892-1997 (21)00081-3
  • 68 El-Anwar MW, El-Ahl MAS, Zidan AA, Yacoup MA-RA-S. Topical use of autologous platelet rich plasma in myringoplasty. Auris Nasus Larynx 2015; 42 (05) 365-368
  • 69 Erkilet E, Koyuncu M, Atmaca S, Yarim M. Platelet-rich plasma improves healing of tympanic membrane perforations: experimental study. J Laryngol Otol 2009; 123 (05) 482-487
  • 70 Brown JB, McDowell F. Epithelial healing and the transplantation of skin. Ann Surg 1942; 115 (06) 1166-1181
  • 71 Nuutila K. Hair follicle transplantation for wound repair. Adv Wound Care (New Rochelle) 2021; 10 (03) 153-163
  • 72 Amoh Y, Hoffman RM. Hair follicle-associated-pluripotent (HAP) stem cells. Cell Cycle 2017; 16 (22) 2169-2175
  • 73 Yang Z, Liu J, Zhu N, Qi F. Comparison between hair follicles and split-thickness skin grafts in cutaneous wound repair. Int J Clin Exp Med 2015; 8 (09) 15822-15827
  • 74 Tausche A-K, Skaria M, Böhlen L. et al. An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen 2003; 11 (04) 248-252
  • 75 Ortega-Zilic N, Hunziker T, Läuchli S. et al. EpiDex® Swiss field trial 2004-2008. Dermatology 2010; 221 (04) 365-372
  • 76 Zakine G, Mimoun M, Pham J, Chaouat M. Reepithelialization from stem cells of hair follicles of dermal graft of the scalp in acute treatment of third-degree burns: first clinical and histologic study. Plast Reconstr Surg 2012; 130 (01) 42e-50e
  • 77 Navsaria HA, Ojeh NO, Moiemen N, Griffiths MA, Frame JD. Reepithelialization of a full-thickness burn from stem cells of hair follicles micrografted into a tissue-engineered dermal template (Integra). Plast Reconstr Surg 2004; 113 (03) 978-981
  • 78 Farber PL, Isoldi FC, Ferreira LM. Electric factors in wound healing. Adv Wound Care (New Rochelle) 2021; 10 (08) 461-476
  • 79 Alvarez OM, Mertz PM, Smerbeck RV, Eaglstein WH. The healing of superficial skin wounds is stimulated by external electrical current. J Invest Dermatol 1983; 81 (02) 144-148
  • 80 Guo A, Song B, Reid B. et al. Effects of physiological electric fields on migration of human dermal fibroblasts. J Invest Dermatol 2010; 130 (09) 2320-2327
  • 81 Kanno S, Oda N, Abe M. et al. Establishment of a simple and practical procedure applicable to therapeutic angiogenesis. Circulation 1999; 99 (20) 2682-2687
  • 82 Strauch B, Herman C, Dabb R, Ignarro LJ, Pilla AA. Evidence-based use of pulsed electromagnetic field therapy in clinical plastic surgery. Aesthet Surg J 2009; 29 (02) 135-143
  • 83 Kwan RL-C, Wong W-C, Yip S-L, Chan K-L, Zheng Y-P, Cheing GL-Y. Pulsed electromagnetic field therapy promotes healing and microcirculation of chronic diabetic foot ulcers: a pilot study. Adv Skin Wound Care 2015; 28 (05) 212-219
  • 84 Gomes RC, Guirro ECO, Gonçalves AC, Farina Junior JA, Murta Junior LO, Guirro RRJ. High-voltage electric stimulation of the donor site of skin grafts accelerates the healing process. A randomized blinded clinical trial. Burns 2018; 44 (03) 636-645
  • 85 Vaghardoost R, Momeni M, Kazemikhoo N. et al. Effect of low-level laser therapy on the healing process of donor site in patients with grade 3 burn ulcer after skin graft surgery (a randomized clinical trial). Lasers Med Sci 2018; 33 (03) 603-607
  • 86 Pinfildi CE, Liebano RE, Hochman BS, Ferreira LM. Helium-neon laser in viability of random skin flap in rats. Lasers Surg Med 2005; 37 (01) 74-77
  • 87 Ghatak PD, Schlanger R, Ganesh K. et al. A wireless electroceutical dressing lowers cost of negative pressure wound therapy. Adv Wound Care (New Rochelle) 2015; 4 (05) 302-311
  • 88 Barki KG, Das A, Dixith S. et al. Electric field based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing. Ann Surg 2019; 269 (04) 756-766
  • 89 Kolosnjaj-Tabi J, Gibot L, Fourquaux I, Golzio M, Rols M-P. Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv Drug Deliv Rev 2019; 138: 56-67
  • 90 Hershcovitch MD, Hom DB. Update in wound healing in facial plastic surgery. Arch Facial Plast Surg 2012; 14 (06) 387-393
  • 91 Nik Hisamuddin NAR, Wan Mohd Zahiruddin WN, Mohd Yazid B, Rahmah S. Use of hyperbaric oxygen therapy (HBOT) in chronic diabetic wound - a randomised trial. Med J Malaysia 2019; 74 (05) 418-424
  • 92 Goldman RJ. Hyperbaric oxygen therapy for wound healing and limb salvage: a systematic review. PM R 2009; 1 (05) 471-489
  • 93 Lubek JE, Hancock MK, Strome SE. What is the value of hyperbaric oxygen therapy in management of osteoradionecrosis of the head and neck?. Laryngoscope 2013; 123 (03) 555-556
  • 94 Simman R, Bach K. Role of hyperbaric oxygen therapy in cosmetic and reconstructive surgery in ischemic soft tissue wounds: a case series. Eplasty 2022; 22: e61
  • 95 Henderson R, Reilly DA, Cooper JS. Hyperbaric oxygen for ischemia due to injection of cosmetic fillers: case report and issues. Plast Reconstr Surg Glob Open 2018; 6 (01) e1618
  • 96 Uittenbogaard D, Lansdorp CA, Bauland CG, Boonstra O. Hyperbaric oxygen therapy for dermal ischemia after dermal filler injection with calcium hydroxylapatite: a case report. Undersea Hyperb Med 2019; 46 (02) 207-210
  • 97 Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules 2018; 23 (09) 2392
  • 98 Li S, Renick P, Senkowsky J, Nair A, Tang L. Diagnostics for wound infections. Adv Wound Care (New Rochelle) 2021; 10 (06) 317-327
  • 99 Kennedy GT, Stone R, Kowalczewski AC. et al. Spatial frequency domain imaging: a quantitative, noninvasive tool for in vivo monitoring of burn wound and skin graft healing. J Biomed Opt 2019; 24 (07) 1-9
  • 100 Lu M, Yee A, Meng F, Harmon J, Hinduja S, Yi S. Enhance wound healing monitoring through a thermal imaging based smartphone app. In: Zhang J, Chen P-H. eds. Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications. Bellingham, Washington, USA: SPIE; 2018: 60
  • 101 Fraiwan L, AlKhodari M, Ninan J, Mustafa B, Saleh A, Ghazal M. Diabetic foot ulcer mobile detection system using smart phone thermal camera: a feasibility study. Biomed Eng Online 2017; 16 (01) 117
  • 102 Ottolino-Perry K, Chamma E, Blackmore KM. et al. Improved detection of clinically relevant wound bacteria using autofluorescence image-guided sampling in diabetic foot ulcers. Int Wound J 2017; 14 (05) 833-841
  • 103 Blackshaw EL, Jeffery SLA. Efficacy of an imaging device at identifying the presence of bacteria in wounds at a plastic surgery outpatients clinic. J Wound Care 2018; 27 (01) 20-26