CC BY 4.0 · TH Open 2023; 07(03): e195-e205
DOI: 10.1055/s-0043-1770782
Original Article

A Combination of Ex Vivo and In Vivo Strategies for Evaluating How Much New Oral Anticoagulants Exacerbate Experimental Intracerebral Bleeding

Juliana R. P. Ferreira
1   Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
,
Isabela D. Sucupira
1   Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
,
Gabriella M. C. Carvalho
2   Laboratório de Coagulação e Trombose, Hospital Universitário Clementino Fraga Filho, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
,
Fernando F. Paiva
3   Centro de Imagens e Espectroscopia por Ressonância Magnética (CIERMag). Departamento de Física e Ciência Interdisciplinar. Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
,
Pedro M. Pimentel-Coelho
4   Laboratório Intermediário de Neuropatologia Experimental. Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
5   Laboratório Intermediário de Neuropatologia Experimental. Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
,
Paulo H. Rosado-de-Castro
2   Laboratório de Coagulação e Trombose, Hospital Universitário Clementino Fraga Filho, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
5   Laboratório Intermediário de Neuropatologia Experimental. Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
,
Paulo A. S. Mourão*
1   Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
,
Roberto J. C. Fonseca*
2   Laboratório de Coagulação e Trombose, Hospital Universitário Clementino Fraga Filho, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
› Author Affiliations
Funding This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).


Abstract

Background Intracerebral hemorrhage is the most serious complication of anticoagulant therapy but the effects of different types of oral anticoagulants on the expansion of these hemorrhages are still unclear. Clinical studies have revealed controversial results; more robust and long-term clinical evaluations are necessary to define their outcomes. An alternative is to test the effect of these drugs in experimental models of intracerebral bleeding induced in animals.

Aims To test new oral anticoagulants (dabigatran etexilate, rivaroxaban, and apixaban) in an experimental model of intracerebral hemorrhage induced by collagenase injection into the brain striatum of rats. Warfarin was used for comparison.

Methods Ex vivo anticoagulant assays and an experimental model of venous thrombosis were employed to determine the doses and periods of time required for the anticoagulants to achieve their maximum effects. Subsequently, volumes of brain hematoma were evaluated after administration of the anticoagulants, using these same parameters. Volumes of brain hematoma were evaluated by magnetic resonance imaging, H&E (hematoxylin and eosin) staining, and Evans blue extravasation. Neuromotor function was assessed by the elevated body swing test.

Results and Conclusions The new oral anticoagulants did not increase intracranial bleeding compared with control animals, while warfarin markedly favored expansion of the hematomas, as revealed by magnetic resonance imaging and H&E staining. Dabigatran etexilate caused a modest but statistically significant increase in Evans blue extravasation. We did not observe significant differences in elevated body swing tests among the experimental groups. The new oral anticoagulants may provide a better control over a brain hemorrhage than warfarin.

Author Contributions

J.R.P.F., I.D.S., and G.M.C.C. performed experiments, F.F.P. and P.H.R.C. performed MRI analysis, P.M.P.C. helped with the ICH model and histological analyses, P.A.S.M. and R.J.C.F. analyzed results and wrote the manuscript.


* These authors contributed equally to this work.




Publication History

Received: 02 March 2023

Accepted: 22 May 2023

Article published online:
10 July 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kearon C, Kahn SR, Agnelli G, Goldhaber S, Raskob GE, Comerota AJ. Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008; 133 (06) 454S-545S
  • 2 Steffel J, Braunwald E. Novel oral anticoagulants: focus on stroke prevention and treatment of venous thrombo-embolism. Eur Heart J 2011; 32 (16) 1968-1976 , 1976a
  • 3 Rincon F, Mayer SA. The epidemiology of intracerebral hemorrhage in the United States from 1979 to 2008. Neurocrit Care 2013; 19 (01) 95-102
  • 4 Dowlatshahi D, Butcher KS, Asdaghi N. et al; Canadian PCC Registry (CanPro) Investigators. Poor prognosis in warfarin-associated intracranial hemorrhage despite anticoagulation reversal. Stroke 2012; 43 (07) 1812-1817
  • 5 Cucchiara B, Messe S, Sansing L, Kasner S, Lyden P. CHANT Investigators. Hematoma growth in oral anticoagulant related intracerebral hemorrhage. Stroke 2008; 39 (11) 2993-2996
  • 6 Choi SH, Kim M, Kim H, Kim DH, Baek YS. Cardiovascular and renal protective effects of non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation. PLoS One 2022; 17 (10) e0275103
  • 7 Jia X, Yin Z, Zhang W, Du S, Kang J. Efficacy and safety of novel oral anticoagulants in patients with atrial nonvalvular atrial fibrillation and diabetes mellitus: a systematic review and meta-analysis. J Transl Med 2022; 20 (01) 441
  • 8 Cameron C, Coyle D, Richter T. et al. Systematic review and network meta-analysis comparing antithrombotic agents for the prevention of stroke and major bleeding in patients with atrial fibrillation. BMJ Open 2014; 4 (06) e004301
  • 9 Saji N, Kimura K, Aoki J, Uemura J, Sakamoto Y. Intracranial hemorrhage caused by non-vitamin k antagonist oral anticoagulants (NOACs)- multicenter retrospective cohort study in Japan. Circ J 2015; 79 (05) 1018-1023
  • 10 Lioutas VA, Goyal N, Katsanos AH. et al. Clinical outcomes and neuroimaging profiles in non-disabled patients with anticoagulant-related intracerebral hemorrhage. Stroke 2018; 49 (10) 2309-2316
  • 11 Boulouis G, Morotti A, Pasi M, Goldstein JN, Gurol ME, Charidimou A. Outcome of intracerebral haemorrhage related to non-vitamin K antagonists oral anticoagulants versus vitamin K antagonists: a comprehensive systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2018; 89 (03) 263-270
  • 12 Hankey GJ, Stevens SR, Piccini JP. et al; ROCKET AF Steering Committee and Investigators. Intracranial hemorrhage among patients with atrial fibrillation anticoagulated with warfarin or rivaroxaban: the rivaroxaban once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation. Stroke 2014; 45 (05) 1304-1312
  • 13 Joung B. Real-world data and recommended dosage of non-vitamin K oral anticoagulants for Korean patients. Korean Circ J 2017; 47 (06) 833-841
  • 14 Graham DJ, Reichman ME, Wernecke M. et al. Stroke, bleeding, and mortality risks in elderly medicare beneficiaries treated with dabigatran or rivaroxaban for nonvalvular atrial fibrillation. JAMA Intern Med 2016; 176 (11) 1662-1671
  • 15 Chatterjee S, Sardar P, Biondi-Zoccai G, Kumbhani DJ. New oral anticoagulants and the risk of intracranial hemorrhage: traditional and Bayesian meta-analysis and mixed treatment comparison of randomized trials of new oral anticoagulants in atrial fibrillation. JAMA Neurol 2013; 70 (12) 1486-1490
  • 16 Paciaroni M, Agnelli G, Giustozzi M. et al. Risk factors for intracerebral hemorrhage in patients with atrial fibrillation on non-vitamin K antagonist oral anticoagulants for stroke prevention. Stroke 2021; 52 (04) 1450-1454
  • 17 Chen X, Huang W, Sun A, Wang L, Mo F, Guo W. Bleeding risks with novel oral anticoagulants especially rivaroxaban versus aspirin: a meta-analysis. Thromb J 2021; 19 (01) 69
  • 18 Chen S, Zeng L, Hu Z. Progressing haemorrhagic stroke: categories, causes, mechanisms and managements. J Neurol 2014; 261 (11) 2061-2078
  • 19 Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke 1990; 21 (05) 801-807
  • 20 Kirkman MA, Allan SM, Parry-Jones AR. Experimental intracerebral hemorrhage: avoiding pitfalls in translational research. J Cereb Blood Flow Metab 2011; 31 (11) 2135-2151
  • 21 Wessler S, Reimer SM, Sheps MC. Biologic assay of a thrombosis-inducing activity in human serum. J Appl Physiol 1959; 14: 943-946
  • 22 Herbert JM, Bernat A, Maffrand JP. Importance of platelets in experimental venous thrombosis in the rat. Blood 1992; 80 (09) 2281-2286
  • 23 Borlongan CV, Sanberg PR. Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. J Neurosci 1995; 15 (7, Pt 2): 5372-5378
  • 24 Ingberg E, Gudjonsdottir J, Theodorsson E, Theodorsson A, Ström JO. Elevated body swing test after focal cerebral ischemia in rodents: methodological considerations. BMC Neurosci 2015; 16: 50
  • 25 Zayed A, Babaresh WM, Darweesh RS, El-Elimat T, Hawamdeh SS. Piperine alters the pharmacokinetics and anticoagulation of warfarin in rats. J Exp Pharmacol 2020; 12: 169-179
  • 26 Fonseca RJC, Sucupira ID, Oliveira SNMCG, Santos GR, Mourão PA. Improved anticoagulant effect of fucosylated chondroitin sulfate orally administered as gastro-resistant tablets. Thromb Haemost 2017; 117 (04) 662-670
  • 27 Vanassche T, Hirsh J, Eikelboom JW, Ginsberg JS. Organ-specific bleeding patterns of anticoagulant therapy: lessons from clinical trials. Thromb Haemost 2014; 112 (05) 918-923
  • 28 Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives?. Front Neurosci 2015; 9: 385
  • 29 Ye F, Garton HJL, Hua Y, Keep RF, Xi G. The role of thrombin in brain injury after hemorrhagic and ischemic stroke. Transl Stroke Res 2021; 12 (03) 496-511
  • 30 Lauer A, Cianchetti FA, Van Cott EM. et al. Anticoagulation with the oral direct thrombin inhibitor dabigatran does not enlarge hematoma volume in experimental intracerebral hemorrhage. Circulation 2011; 124 (15) 1654-1662
  • 31 Tanoue S, Inamasu J, Yamada M, Toyama H, Hirose Y. Does dabigatran increase the risk of delayed hematoma expansion in a rat model of collagenase-induced intracerebral hemorrhage?. J Stroke Cerebrovasc Dis 2015; 24 (02) 374-380
  • 32 Zhou W, Schwarting S, Illanes S. et al. Hemostatic therapy in experimental intracerebral hemorrhage associated with the direct thrombin inhibitor dabigatran. Stroke 2011; 42 (12) 3594-3599
  • 33 Zhou W, Zorn M, Nawroth P. et al. Hemostatic therapy in experimental intracerebral hemorrhage associated with rivaroxaban. Stroke 2013; 44 (03) 771-778
  • 34 Tanaka K, Toyoda K. Clinical strategies against early hematoma expansion following intracerebral hemorrhage. Front Neurosci 2021; 15: 677744
  • 35 Mazzoleni V, Padovani A, Morotti A. Emergency management of intracerebral hemorrhage. J Crit Care 2023; 74: 154232
  • 36 Andresen K, Atar D, Gjertsen E, Ghanima W, Roseth S, Johansen OE. Mechanisms of action and clinical use of specific reversal agents for non-vitamin K antagonist oral anticoagulants. Scand Cardiovasc J 2018; 52 (03) 156-162
  • 37 Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 1993; 24 (07) 987-993
  • 38 Shi X, Bai H, Wang J. et al. Behavioral assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Front Neurol 2021; 12: 667511
  • 39 Pétrault M, Ouk T, Pétrault O, Bastide M, Bordet R, Bérézowski V. Safety of oral anticoagulants on experimental brain microbleeding and cognition. Neuropharmacology 2019; 155: 162-172
  • 40 Puy L, Leboullenger C, Auger F, Bordet R, Cordonnier C, Bérézowski V. Intracerebral hemorrhage-induced cognitive impairment in rats is associated with brain atrophy, hypometabolism, and network dysconnectivity. Front Neurosci 2022; 16: 882996
  • 41 Lauer A, Pfeilschifter W, Schaffer CB, Lo EH, Foerch C. Intracerebral haemorrhage associated with antithrombotic treatment: translational insights from experimental studies. Lancet Neurol 2013; 12 (04) 394-405
  • 42 Wang J, Doré S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 2007; 27 (05) 894-908
  • 43 Khattar NK, James RF. Heparin: the silver bullet of aneurysmal subarachnoid hemorrhage?. Front Neurol 2018; 9: 97
  • 44 Lukito PP, Lie H, Helsa K, July J. Heparin in the treatment of aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurosurg Focus 2022; 52 (03) E9
  • 45 Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of heparin and related drugs. Pharmacol Rev 2016; 68 (01) 76-141
  • 46 Fonseca RJC, Mourão PAS. Pharmacological activities of sulfated fucose-rich polysaccharides after oral administration: perspectives for the development of new carbohydrate-based drugs. Mar Drugs 2021; 19 (08) 425
  • 47 Tovar AMF, Santos GRC, Capillé NV. et al. Structural and haemostatic features of pharmaceutical heparins from different animal sources: challenges to define thresholds separating distinct drugs. Sci Rep 2016; 6: 35619