CC BY 4.0 · Indian J Med Paediatr Oncol 2023; 44(06): 592-601
DOI: 10.1055/s-0043-1771186
Review Article

Disease Response Assessment Modalities in Chronic Myeloid Leukemia: Past, Present, and Future

Deepak Kumar Mishra
1   Department of Laboratory Sciences, Haematology and Molecular Pathology, TATA Medical Centre, Kolkata, West Bengal, India
,
Indranil Dey
2   Department of Molecular Pathology, TATA Medical Centre, Kolkata, West Bengal, India
,
Rakesh Demde
2   Department of Molecular Pathology, TATA Medical Centre, Kolkata, West Bengal, India
,
Sushant Vinarkar
3   Department of Haematology and Molecular Pathology, TATA Medical Centre, Kolkata, West Bengal, India
,
Mayur Parihar
4   Department of Haematology, Cytogenetics and Molecular Pathology, TATA Medical Centre, Kolkata, West Bengal, India
› Institutsangaben

Abstract

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by the BCR::ABL1 fusion gene, which results from a reciprocal translocation between chromosome 9 and 22 t(9;22)(q34;q11). The use of tyrosine kinase inhibitor (TKI) against the chimeric BCR::ABL1 fusion protein has led to a paradigm shift in CML patient outcomes. Despite generational advancements in TKI, a fraction of patients harbor residual disease or exhibit resistance to TKI. The importance of disease monitoring and detection of resistance mechanisms has gained prominence with increasing knowledge about disease evolution. In the past, cytogenetic techniques such as karyotyping and fluorescence in situ hybridization were widely utilized for monitoring disease and prognostication. These techniques had various challenges related to limited sensitivity in minimal residual disease (MRD) monitoring; however, their importance still holds in the detection of additional chromosomal aberrations and in cases with cryptic insertions, variants, and masked Philadelphia chromosome. Molecular genetics has evolved significantly from the past to the present times for MRD monitoring in CML patients. Qualitative reverse transcription polymerase chain reaction (RQ-PCR) can be performed at diagnosis to detect the BCR::ABL1 transcript, while quantitative RQ-PCR is the most widely used and well-standardized MRD monitoring method. The DNA-based assays demonstrated high sensitivity and specificity, with many efforts directed toward making the laborious step of BCR::ABL1 breakpoint characterization less tedious to increase the utility of DNA-based MRD approach in the future. Flow cytometric–based approaches for the detection of the BCR::ABL1 fusion protein have been under trial with a scope of becoming a more robust and convenient methodology for monitoring in the future. Upcoming techniques such as digital PCR and ultra-deep sequencing next-generation sequencing (UDS-NGS) have shown promising results in residual disease monitoring and detection of resistance mutations. Novel MRD monitoring systems that are independent of BCR::ABL1 fusion such as the detection of CD26+ leukemic stem cells and microRNA mutations are the future of residual disease monitoring, which can go up to the level of a single cell. In this review, we tried to discuss the evolution of most of the above-mentioned techniques encompassing the pros, cons, utility, and challenges for MRD monitoring and detection of TKI resistance mutations.



Publikationsverlauf

Artikel online veröffentlicht:
27. November 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Bhutani M, Vora A, Kumar L, Kochupillai V. Lympho-hemopoietic malignancies in India. Med Oncol 2002; 19 (03) 141-150
  • 2 Bansal S, Prabhash K, Parikh P. Chronic myeloid leukemia data from India. Indian J Med Paediatr Oncol 2013; 34 (03) 154-158
  • 3 Shah NP. Advanced CML: therapeutic options for patients in accelerated and blast phases. J Natl Compr Canc Netw 2008; 6 (Suppl 2): S31-S36
  • 4 Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol 2015; 94 (Suppl 2): S107-S121
  • 5 Soverini S, Mancini M, Bavaro L, Cavo M, Martinelli G. Chronic myeloid leukemia: the paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy. Mol Cancer 2018; 17 (01) 49
  • 6 Kadam PR, Nanjangud GJ, Advani SH. et al. Chromosomal characteristics of chronic and blastic phase of chronic myeloid leukemia. A study of 100 patients in India. Cancer Genet Cytogenet 1991; 51 (02) 167-181
  • 7 Nanjangud G, Kadam PR, Saikia T. et al. Karyotypic findings as an independent prognostic marker in chronic myeloid leukaemia blast crisis. Leuk Res 1994; 18 (05) 385-392
  • 8 Krishna Chandran R, Geetha N, Sakthivel KM, Suresh Kumar R, Jagathnath Krishna KMN, Sreedharan H. Impact of Additional Chromosomal Aberrations on the Disease Progression of Chronic Myelogenous Leukemia. Front Oncol 2019; 9: 88
  • 9 Amare PS, Baisane C, Saikia T, Nair R, Gawade H, Advani S. Fluorescence in situ hybridization, highly efficient technique of molecular diagnosis, also a sensitive tool for prediction of future course of disease in patients with myeloid leukemias. Cancer Genet Cytogenet 2001; 131: 125-134
  • 10 Luatti S, Castagnetti F, Marzocchi G. et al. Additional chromosomal abnormalities in Philadelphia-positive clone: adverse prognostic influence on frontline imatinib therapy: a GIMEMA Working Party on CML analysis [published correction appears in Blood. 2013 Jun 27;121(26):5259. Cambrin, Rege [corrected to Rege-Cambrin, Giovanna]]. Blood 2012; 120 (04) 761-767
  • 11 Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 2010; 120 (07) 2254-2264
  • 12 Hughes TP, Hochhaus A, Branford S. et al; IRIS investigators. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood 2010; 116 (19) 3758-3765
  • 13 Landstrom AP, Ketterling RP, Knudson RA, Tefferi A. Utility of peripheral blood dual color, double fusion fluorescent in situ hybridization for BCR/ABL fusion to assess cytogenetic remission status in chronic myeloid leukemia. Leuk Lymphoma 2006; 47 (10) 2055-2061
  • 14 Kantarjian H, Schiffer C, Jones D, Cortes J. Monitoring the response and course of chronic myeloid leukemia in the modern era of BCR-ABL tyrosine kinase inhibitors: practical advice on the use and interpretation of monitoring methods. Blood 2008; 111 (04) 1774-1780
  • 15 Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol 2014; 89 (05) 547-556
  • 16 Hughes TP, Branford S. Monitoring disease response to tyrosine kinase inhibitor therapy in CML. Hematology (Am Soc Hematol Educ Program) 2009; 477-487
  • 17 Assouline S, Lipton JH. Monitoring response and resistance to treatment in chronic myeloid leukemia. Curr Oncol 2011; 18 (02) e71-e83
  • 18 Hochhaus A, Baccarani M, Silver RT. et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020; 34 (04) 966-984
  • 19 Gabert J, Beillard E, van der Velden VH. et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 2003; 17 (12) 2318-2357
  • 20 Foroni L, Wilson G, Gerrard G. et al. Guidelines for the measurement of BCR-ABL1 transcripts in chronic myeloid leukaemia. Br J Haematol 2011; 153 (02) 179-190
  • 21 Costa JM, Ernault P, Olivi M, Gaillon T, Arar K. Chimeric LNA/DNA probes as a detection system for real-time PCR. Clin Biochem 2004; 37 (10) 930-932
  • 22 Baccarani M, Deininger MW, Rosti G. et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 2013; 122 (06) 872-884
  • 23 Link-Lenczowska D, Pallisgaard N, Cordua S. et al. A comparison of qPCR and ddPCR used for quantification of the JAK2 V617F allele burden in Ph negative MPNs. Ann Hematol 2018; 97 (12) 2299-2308
  • 24 Hehlmann R. The new ELN recommendations for treating CML. J Clin Med 2020; 9 (11) 3671
  • 25 Bochicchio MT, Petiti J, Berchialla P. et al. Droplet digital PCR for BCR-ABL1 monitoring in diagnostic routine: ready to start?. Cancers (Basel) 2021; 13 (21) 5470
  • 26 Del Giudice I, Raponi S, Della Starza I. et al. Minimal residual disease in chronic lymphocytic leukemia: a new goal?. Front Oncol 2019; 9: 689
  • 27 Coccaro N, Anelli L, Zagaria A. et al. Droplet digital PCR is a robust tool for monitoring minimal residual disease in adult Philadelphia-positive acute lymphoblastic leukemia. J Mol Diagn 2018; 20 (04) 474-482
  • 28 Hindson CM, Chevillet JR, Briggs HA. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 2013; 10 (10) 1003-1005
  • 29 Baker M. Digital PCR hits its stride. Nat Methods 2012; 9 (06) 541-544
  • 30 Jennings LJ, George D, Czech J, Yu M, Joseph L. Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn 2014; 16 (02) 174-179
  • 31 Goh HG, Lin M, Fukushima T. et al. Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay. Leuk Lymphoma 2011; 52 (05) 896-904
  • 32 Franke GN, Maier J, Wildenberger K. et al. Comparison of real-time quantitative PCR and digital droplet PCR for BCR-ABL1 monitoring in patients with chronic myeloid leukemia. J Mol Diagn 2020; 22 (01) 81-89
  • 33 Franke GN, Maier J, Wildenberger K. et al. Comparison of Real-Time Quantitative PCR and Digital Droplet PCR for BCR-ABL1 Monitoring in Patients with Chronic Myeloid Leukemia. J Mol Diagn 2020; 22 (01) 81-89
  • 34 Bernardi S, Malagola M, Zanaglio C. et al. Digital PCR improves the quantitation of DMR and the selection of CML candidates to TKIs discontinuation. Cancer Med 2019; 8 (05) 2041-2055
  • 35 Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A 1999; 96 (16) 9236-9241
  • 36 Foskett P, Gerrard G, Foroni L. Real-time quantification assay to monitor BCR-ABL1 transcripts in chronic myeloid leukemia. Methods Mol Biol 2014; 1160: 115-124
  • 37 Wang WJ, Zheng CF, Liu Z. et al. Droplet digital PCR for BCR/ABL(P210) detection of chronic myeloid leukemia: a high sensitive method of the minimal residual disease and disease progression. Eur J Haematol 2018; 101 (03) 291-296
  • 38 Mori S, Vagge E, le Coutre P. et al. Age and dPCR can predict relapse in CML patients who discontinued imatinib: the ISAV study. Am J Hematol 2015; 90 (10) 910-914
  • 39 Atallah E, Schiffer CA, Weinfurt KP. et al. Design and rationale for the life after stopping tyrosine kinase inhibitors (LAST) study, a prospective, single-group longitudinal study in patients with chronic myeloid leukemia. BMC Cancer 2018; 18 (01) 359
  • 40 Bernardi S, Foroni C, Zanaglio C. et al. Feasibility of tumor‑derived exosome enrichment in the onco‑hematology leukemic model of chronic myeloid leukemia. Int J Mol Med 2019; 44 (06) 2133-2144
  • 41 Enjeti A, Granter N, Ashraf A. et al. A longitudinal evaluation of performance of automated BCR-ABL1 quantitation using cartridge-based detection system. Pathology 2015; 47 (06) 570-574
  • 42 Gerrard G, Foong HE, Mudge K, Alikian M, Apperley JF, Foroni L. Cepheid xpert monitor platform for the confirmation of BCR-ABL1 IS conversion factors for the molecular monitoring of chronic myeloid leukaemia. Leuk Res 2016; 49: 47-50
  • 43 O'Dwyer ME, Swords R, Nagler A. et al. Nilotinib 300 mg BID as frontline treatment of CML: prospective analysis of the Xpert BCR-ABL monitor system and significance of 3-month molecular response. Leuk Res 2014; 38 (03) 310-315
  • 44 Qin YZ, Jiang Q, Jiang H. et al. Prevalence and outcomes of uncommon BCR-ABL1 fusion transcripts in patients with chronic myeloid leukaemia: data from a single centre. Br J Haematol 2018; 182 (05) 693-700
  • 45 Duan MH, Li H, Cai H. A rare e13a3 (b2a3) BCR-ABL1 fusion transcript with normal karyotype in chronic myeloid leukemia: the challenges in diagnosis and monitoring minimal residual disease (MRD). Leuk Res 2017; 59: 8-11
  • 46 Tong YQ, Zhao ZJ, Liu B. et al. New rapid method to detect BCR-ABL fusion genes with multiplex RT-qPCR in one-tube at a time. Leuk Res 2018; 69: 47-53
  • 47 Raponi S, De Propris MS, Wai H. et al. An accurate and rapid flow cytometric diagnosis of BCR-ABL positive acute lymphoblastic leukemia. Haematologica 2009; 94 (12) 1767-1770
  • 48 Yujie W, Yu Z, Sixuan Q. et al. Detection of BCR-ABL fusion proteins in patients with leukemia using a cytometric bead array. Leuk Lymphoma 2012; 53 (03) 451-455
  • 49 Löf L, Arngården L, Olsson-Strömberg U. et al. Flow cytometric measurement of blood cells with BCR-ABL1 fusion protein in chronic myeloid leukemia. Sci Rep 2017; 7 (01) 623
  • 50 Herrmann H, Sadovnik I, Cerny-Reiterer S. et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood 2014; 123 (25) 3951-3962
  • 51 Valent P, Sadovnik I, Ráčil Z. et al. DPPIV (CD26) as a novel stem cell marker in Ph+ chronic myeloid leukaemia. Eur J Clin Invest 2014; 44 (12) 1239-1245
  • 52 Bocchia M, Sicuranza A, Abruzzese E. et al. Residual peripheral blood CD26+ leukemic stem cells in chronic myeloid leukemia patients during TKI therapy and during treatment-free remission. Front Oncol 2018; 8: 194
  • 53 Herrmann H, Cerny-Reiterer S, Gleixner KV. et al. CD34(+)/CD38(-) stem cells in chronic myeloid leukemia express Siglec-3 (CD33) and are responsive to the CD33-targeting drug gemtuzumab/ozogamicin. Haematologica 2012; 97 (02) 219-226
  • 54 Giustacchini A, Thongjuea S, Barkas N. et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med 2017; 23 (06) 692-702
  • 55 Warfvinge R, Geironson L, Sommarin MNE. et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood 2017; 129 (17) 2384-2394
  • 56 Huang XP, Hou J, Shen XY. et al. MicroRNA-486-5p, which is downregulated in hepatocellular carcinoma, suppresses tumor growth by targeting PIK3R1. FEBS J 2015; 282 (03) 579-594
  • 57 Gordon JE, Wong JJ, Rasko JE. MicroRNAs in myeloid malignancies. Br J Haematol 2013; 162 (02) 162-176
  • 58 Jiang M, Li X, Quan X. et al. MiR-486 as an effective biomarker in cancer diagnosis and prognosis: a systematic review and meta-analysis. Oncotarget 2018; 9 (17) 13948-13958
  • 59 Ninawe A, Guru SA, Yadav P. et al. miR-486-5p: a prognostic biomarker for chronic myeloid leukemia. ACS Omega 2021; 6 (11) 7711-7718
  • 60 Waller CF, Dennebaum G, Feldmann C, Lange W. Long-template DNA polymerase chain reaction for the detection of the bcr/abl translocation in patients with chronic myelogenous leukemia. Clin Cancer Res 1999; 5 (12) 4146-4151
  • 61 Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 1995; 23 (06) 1087-1088
  • 62 Mattarucchi E, Spinelli O, Rambaldi A. et al. Molecular monitoring of residual disease in chronic myeloid leukemia by genomic DNA compared with conventional mRNA analysis. J Mol Diagn 2009; 11 (05) 482-487
  • 63 Pagani IS, Spinelli O, Mattarucchi E. et al. Genomic quantitative real-time PCR proves residual disease positivity in more than 30% samples with negative mRNA-based qRT-PCR in chronic myeloid leukemia. Oncoscience 2014; 1 (07) 510-521
  • 64 Bartley PA, Martin-Harris MH, Budgen BJ, Ross DM, Morley AA. Rapid isolation of translocation breakpoints in chronic myeloid and acute promyelocytic leukaemia. Br J Haematol 2010; 149 (02) 231-236
  • 65 Bartley PA, Latham S, Budgen B. et al. A DNA real-time quantitative PCR method suitable for routine monitoring of low levels of minimal residual disease in chronic myeloid leukemia. J Mol Diagn 2015; 17 (02) 185-192
  • 66 Bartley PA, Ross DM, Latham S. et al. Sensitive detection and quantification of minimal residual disease in chronic myeloid leukaemia using nested quantitative PCR for BCR-ABL DNA. Int J Lab Hematol 2010; 32 (6 Pt 1): e222-e228
  • 67 Cortes J, Lang F. Third-line therapy for chronic myeloid leukemia: current status and future directions. J Hematol Oncol 2021; 14 (01) 44
  • 68 Kaleem B, Shahab S, Ahmed N, Shamsi TS. Chronic myeloid leukemia--prognostic value of mutations. Asian Pac J Cancer Prev 2015; 16 (17) 7415-7423
  • 69 Baccarani M, Soverini S, De Benedittis C. Molecular monitoring and mutations in chronic myeloid leukemia: how to get the most out of your tyrosine kinase inhibitor. Am Soc Clin Oncol Educ Book 2014; 167-175
  • 70 Nardi V, Azam M, Daley GQ. Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Curr Opin Hematol 2004; 11 (01) 35-43
  • 71 Bommannan KB, Naseem S, Binota J, Varma N, Malhotra P, Varma S. Tyrosine kinase domain mutations in chronic myelogenous leukemia patients: a single center experience. J Postgrad Med 2022; 68 (02) 93-97
  • 72 Khorashad JS, Kelley TW, Szankasi P. et al. BCR-ABL1 compound mutations in tyrosine kinase inhibitor-resistant CML: frequency and clonal relationships. Blood 2013; 121 (03) 489-498
  • 73 Zabriskie MS, Eide CA, Tantravahi SK. et al. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell 2014; 26 (03) 428-442
  • 74 Alves R, Gonçalves AC, Rutella S. et al. Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia-from molecular mechanisms to clinical relevance. Cancers (Basel) 2021; 13 (19) 4820
  • 75 O'Hare T, Shakespeare WC, Zhu X. et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 2009; 16 (05) 401-412
  • 76 NCCN. . NCCN Clinical Practice Guidelines in Oncology. NCCN Chronic Myelogenous Leukemia Guidelines Version 4. NCCN; 2013
  • 77 Soverini S, Branford S, Nicolini FE. et al. Implications of BCR-ABL1 kinase domain-mediated resistance in chronic myeloid leukemia. Leuk Res 2014; 38 (01) 10-20
  • 78 Patkar N, Ghodke K, Joshi S. et al. Characteristics of BCR-ABL kinase domain mutations in chronic myeloid leukemia from India: not just missense mutations but insertions and deletions are also associated with TKI resistance. Leuk Lymphoma 2016; 57 (11) 2653-2660
  • 79 Lavallade H, Kizilors A. The importance of mutational analysis in chronic myeloid leukaemia for treatment choice. EMJ Oncol 2016; 4 (01) 86-95
  • 80 Alikian M, Gerrard G, Subramanian PG. et al. BCR-ABL1 kinase domain mutations: methodology and clinical evaluation. Am J Hematol 2012; 87 (03) 298-304
  • 81 Sorel N, Mayeur-Rousse C, Deverrière S. et al. Comprehensive characterization of a novel intronic pseudo-exon inserted within an e14/a2 BCR-ABL rearrangement in a patient with chronic myeloid leukemia. J Mol Diagn 2010; 12 (04) 520-524
  • 82 Soverini S, Bernardi S, Galimberti S. Molecular testing in CML between old and new methods: are we at a turning point?. J Clin Med 2020; 9 (12) 3865
  • 83 Vannuffel P, Bavaro L, Nollet F. et al. Droplet Digital PCR Phasing (DROP-PHASE): A Novel Method for Straightforward Detection of BCR-ABL1 Compound Mutations in Tyrosine Kinase Inhibitors Resistant Chronic Myeloid Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Blood 2019; 134 (Supplement_1): 4660
  • 84 Soverini S, Abruzzese E, Bocchia M. et al. Next-generation sequencing for BCR-ABL1 kinase domain mutation testing in patients with chronic myeloid leukemia: a position paper. J Hematol Oncol 2019; 12 (01) 131
  • 85 Yohe S, Thyagarajan B. Review of clinical next-generation sequencing. Arch Pathol Lab Med 2017; 141 (11) 1544-1557
  • 86 Machova Polakova K, Kulvait V, Benesova A. et al. Next-generation deep sequencing improves detection of BCR-ABL1 kinase domain mutations emerging under tyrosine kinase inhibitor treatment of chronic myeloid leukemia patients in chronic phase. J Cancer Res Clin Oncol 2015; 141 (05) 887-899
  • 87 Parker WT, Phillis SR, Yeung DT, Hughes TP, Scott HS, Branford S. Many BCR-ABL1 compound mutations reported in chronic myeloid leukemia patients may actually be artifacts due to PCR-mediated recombination. Blood 2014; 124 (01) 153-155
  • 88 Schmitt MW, Pritchard JR, Leighow SM. et al. Single-Molecule Sequencing Reveals Patterns of Preexisting Drug Resistance That Suggest Treatment Strategies in Philadelphia-Positive Leukemias. Clin Cancer Res 2018; 24 (21) 5321-5334
  • 89 Deininger MW, McGreevey L, Willis S, Bainbridge TM, Druker BJ, Heinrich MC. Detection of ABL kinase domain mutations with denaturing high-performance liquid chromatography. Leukemia 2004; 18 (04) 864-871
  • 90 Wongboonma W, Thongnoppakhun W, Auewarakul CU. BCR-ABL kinase domain mutations in tyrosine kinase inhibitors-naïve and -exposed Southeast Asian chronic myeloid leukemia patients. Exp Mol Pathol 2012; 92 (02) 259-265