RSS-Feed abonnieren
DOI: 10.1055/s-0043-1772168
Scoliosis
Abstract
Scoliosis is a three-dimensional spinal deformity that can occur at any age. It may be idiopathic or secondary in children, idiopathic and degenerative in adults. Management of patients with scoliosis is multidisciplinary, involving rheumatologists, radiologists, orthopaedic surgeons, and prosthetists. Imaging plays a central role in diagnosis, including the search for secondary causes, follow-up, and preoperative work-up if surgery is required. Evaluating scoliosis involves obtaining frontal and lateral full-spine radiographs in the standing position, with analysis of coronal and sagittal alignment. For adolescent idiopathic scoliosis, imaging follow-up is often required, accomplished using low-dose stereoradiography such as EOS imaging. For adult degenerative scoliosis, the crucial characteristic is rotatory subluxation, also well detected on radiographs. Magnetic resonance imaging is usually more informative than computed tomography for visualizing associated canal and foraminal stenoses. Radiologists must also have a thorough understanding of postoperative features and complications of scoliosis surgery because aspects can be misleading.
Publikationsverlauf
Artikel online veröffentlicht:
10. Oktober 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet 2008; 371 (9623) 1527-1537
- 2 Simoni P, Negro G, Moeremans M, Leucio A. The adolescent spine. Semin Musculoskelet Radiol 2022; 26 (04) 501-509
- 3 Diebo BG, Shah NV, Boachie-Adjei O. et al. Adult spinal deformity. Lancet 2019; 394 (10193): 160-172
- 4 Guglielmi R, Di Chio T, Kaleeta Maalu JP, Aparisi Gómez MP, De Leucio A, Simoni P. Preoperative and postoperative imaging in idiopathic scoliosis: what the surgeon wants to know. Semin Musculoskelet Radiol 2021; 25 (01) 155-166
- 5 Dunn J, Henrikson NB, Morrison CC, Blasi PR, Nguyen M, Lin JS. Screening for adolescent idiopathic scoliosis: evidence report and systematic review for the US Preventive Services Task Force. JAMA 2018; 319 (02) 173-187
- 6 Kim W, Porrino JA, Hood KA, Chadaz TS, Klauser AS, Taljanovic MS. Clinical evaluation, imaging, and management of adolescent idiopathic and adult degenerative scoliosis. Curr Probl Diagn Radiol 2019; 48 (04) 402-414
- 7 Horne JP, Flannery R, Usman S. Adolescent idiopathic scoliosis: diagnosis and management. Am Fam Physician 2014; 89 (03) 193-198
- 8 Zerouali M, Parpaleix A, Benbakoura M, Rigault C, Champsaur P, Guenoun D. Automatic deep learning-based assessment of spinopelvic coronal and sagittal alignment. Diagn Interv Imaging 2023; 104 (7-8): 343-350
- 9 Ferrero E, Mazda K, Simon AL, Ilharreborde B. Preliminary experience with SpineEOS, a new software for 3D planning in AIS surgery. Eur Spine J 2018; 27 (09) 2165-2174
- 10 Kim H, Kim HS, Moon ES. et al. Scoliosis imaging: what radiologists should know. Radiographics 2010; 30 (07) 1823-1842
- 11 Pruijs JEH, Hageman MAPE, Keessen W, van der Meer R, van Wieringen JC. Variation in Cobb angle measurements in scoliosis. Skeletal Radiol 1994; 23 (07) 517-520
- 12 Malfair D, Flemming AK, Dvorak MF. et al. Radiographic evaluation of scoliosis: review. AJR Am J Roentgenol 2010; 194 (03) S8-S22
- 13 Ferrero E, Bocahut N, Lefevre Y. et al; Groupe d'Etude sur la Scoliose (GES). Proximal junctional kyphosis in thoracic adolescent idiopathic scoliosis: risk factors and compensatory mechanisms in a multicenter national cohort. Eur Spine J 2018; 27 (09) 2241-2250
- 14 Kuklo TR, Potter BK, Lenke LG. Vertebral rotation and thoracic torsion in adolescent idiopathic scoliosis: what is the best radiographic correlate?. J Spinal Disord Tech 2005; 18 (02) 139-147
- 15 Cerny P, Marik I, Pallova I. The radiographic method for evaluation of axial vertebral rotation—presentation of the new method. Scoliosis 2014; 9 (01) 11
- 16 Ferrero E, Lafage R, Challier V. et al. Clinical and stereoradiographic analysis of adult spinal deformity with and without rotatory subluxation. Orthop Traumatol Surg Res 2015; 101 (05) 613-618
- 17 Gardner ROE, Torrie PAG, Bertram W, Baker RP, Harding IJ. A radiological evaluation of lateral vertebral subluxation associated with spinal stenosis in the lumbar spine in degenerative scoliosis. Spine Deform 2013; 1 (05) 365-370
- 18 Ferrero E, Khalifé M, Marie-Hardy L. et al. Do curve characteristics influence stenosis location and occurrence of radicular pain in adult degenerative scoliosis?. Spine Deform 2019; 7 (03) 472-480
- 19 Karkenny AJ, Magee LC, Landrum MR, Anari JB, Spiegel D, Baldwin K. The variability of pelvic obliquity measurements in patients with neuromuscular scoliosis. JBJS Open Access 2021; 6 (01) e20
- 20 Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F. The impact of positive sagittal balance in adult spinal deformity. Spine 2005; 30 (18) 2024-2029
- 21 Dimeglio A, Canavese F. Progression or not progression? How to deal with adolescent idiopathic scoliosis during puberty. J Child Orthop 2013; 7 (01) 43-49
- 22 Parvaresh KC, Pennock AT, Bomar JD, Wenger DR, Upasani VV. Analysis of acetabular ossification from the triradiate cartilage and secondary centers. J Pediatr Orthop 2018; 38 (03) e145-e150
- 23 Lacroix M, Nguyen C, Burns R, Laporte A, Rannou F, Feydy A. Degenerative lumbar spine disease: imaging and biomechanics. Semin Musculoskelet Radiol 2022; 26 (04) 424-438
- 24 Ilharreborde B, Ferrero E, Alison M, Mazda K. EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Eur Spine J 2016; 25 (02) 526-531
- 25 Alrehily F, Hogg P, Twiste M, Johansen S, Tootell A. Scoliosis imaging: an analysis of radiation risk in the CT scan projection radiograph and a comparison with projection radiography and EOS. Radiography 2019; 25 (03) e68-e74
- 26 Ruffilli A, Fiore M, Martikos K. et al. Does use of pre-operative low-dose CT-scan in adolescent idiopathic scoliosis improve accuracy in screw placement? Results of a retrospective study. Spine Deform 2021; 9 (05) 1403-1410
- 27 Milić I, Milić M, Djorić I, Marinković I, Boljanović J, Marinković S. Spondylocostal dysostosis associated with split spinal cord and other malformations. Pediatr Neurosurg 2019; 54 (06) 367-374
- 28 Tully PA, Edwards BA, Mograby O. et al. Should all paediatric patients with presumed idiopathic scoliosis undergo MRI screening for neuro-axial disease?. Childs Nerv Syst 2018; 34 (11) 2173-2178
- 29 Gettys FK, Carpenter A, Stasikelis PJ. The role of MRI in children with congenital limb deficiencies with associated scoliosis. J Pediatr Orthop 2020; 40 (05) e390-e393
- 30 Kuittinen P, Sipola P, Leinonen V. et al. Preoperative MRI findings predict two-year postoperative clinical outcome in lumbar spinal stenosis. PLoS One 2014; 9 (09) e106404
- 31 Ferrero E, Skalli W, Lafage V. et al. Relationships between radiographic parameters and spinopelvic muscles in adult spinal deformity patients. Eur Spine J 2020; 29 (06) 1328-1339
- 32 Ferrero E, Skalli W, Khalifé M. et al. Volume of spinopelvic muscles: comparison between adult spinal deformity patients and asymptomatic subjects. Spine Deform 2021; 9 (06) 1617-1624
- 33 Pahys JM, Guille JT. What's new in congenital scoliosis?. J Pediatr Orthop 2018; 38 (03) e172-e179
- 34 Burnei G, Gavriliu S, Vlad C. et al. Congenital scoliosis: an up-to-date. J Med Life 2015; 8 (03) 388-397
- 35 Arlet V, Odent T, Aebi M. Congenital scoliosis. Eur Spine J 2003; 12 (05) 456-463
- 36 Haider S, Le LQ, Cho G, Xi Y, Chhabra A. Scoliosis in neurofibromatosis type 1 on whole-body magnetic resonance imaging: frequency and association with intraspinal and paraspinal tumors. J Comput Assist Tomogr 2022; 46 (02) 231-235
- 37 Yang N, Luo M, Zhao S, Wang W, Xia L. Morphological differences between the pedicles in nondystrophic scoliosis secondary to neurofibromatosis type 1 and those in adolescent idiopathic scoliosis. World Neurosurg 2020; 144: e9-e14
- 38 Pollock L, Ridout A, Teh J. et al. The musculoskeletal manifestations of Marfan syndrome: diagnosis, impact, and management. Curr Rheumatol Rep 2021; 23 (11) 81
- 39 Sponseller PD, Sethi N, Cameron DE, Pyeritz RE. Infantile scoliosis in Marfan syndrome. Spine 1997; 22 (05) 509-516
- 40 Saito N, Ebara S, Ohotsuka K, Kumeta H, Takaoka K. Natural history of scoliosis in spastic cerebral palsy. Lancet 1998; 351 (9117) 1687-1692
- 41 Weigl DM. Scoliosis in non-ambulatory cerebral palsy: challenges and management. Isr Med Assoc J 2019; 21 (11) 752-755
- 42 Reames DL, Smith JS, Fu KMG. et al; Scoliosis Research Society Morbidity and Mortality Committee. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine 2011; 36 (18) 1484-1491
- 43 Sapkas G, Efstathopoulos NE, Papadakis M. Undiagnosed osteoid osteoma of the spine presenting as painful scoliosis from adolescence to adulthood: a case report. Scoliosis 2009; 4 (01) 9
- 44 Jain M, Doki S, Gantaguru A, Mohakud S, Jha S. Osteoid osteoma of the body of the vertebrae causing painful scoliosis. Asian J Neurosurg 2020; 15 (04) 1037-1040
- 45 Uehara M, Takahashi J, Kuraishi S. et al. Osteoid osteoma presenting as thoracic scoliosis. Spine J 2015; 15 (12) e77-e81
- 46 Galgano MA, Goulart CR, Iwenofu H, Chin LS, Lavelle W, Mendel E. Osteoblastomas of the spine: a comprehensive review. Neurosurg Focus 2016; 41 (02) E4
- 47 Gaddipati R, Ma J, Dayawansa S. et al. Lumbar ganglioneuroma presenting with scoliosis. Cureus 2021; 13 (07) e16794
- 48 Kapitancuke M, Rutkauskaite V, Zagorskis R. et al. LGG-03. Pediatric spinal deformities concomitant with spinal cord pilocytic astrocytoma. Neuro Oncol 2022; 24 (Suppl. 01) i87
- 49 Winegar BA, Kay MD, Chadaz TS, Taljanovic MS, Hood KA, Hunter TB. Update on imaging of spinal fixation hardware. Semin Musculoskelet Radiol 2019; 23 (02) e56-e79
- 50 Srinivasan A, Hoeffner E, Ibrahim M, Shah GV, LaMarca F, Mukherji SK. Utility of dual-energy CT virtual keV monochromatic series for the assessment of spinal transpedicular hardware-bone interface. AJR Am J Roentgenol 2013; 201 (04) 878-883
- 51 Greffier J, Villani N, Defez D, Dabli D, Si-Mohamed S. Spectral CT imaging: technical principles of dual-energy CT and multi-energy photon-counting CT. Diagn Interv Imaging 2023; 104 (04) 167-177
- 52 Boccalini S, Si-Mohamed S. Spectral photon counting CT: not just a pimped-up new version of dual-energy CT. Diagn Interv Imaging 2023; 104 (02) 51-52
- 53 Ariyanayagam T, Malcolm PN, Toms AP. Advances in metal artifact reduction techniques for periprosthetic soft tissue imaging. Semin Musculoskelet Radiol 2015; 19 (04) 328-334
- 54 Williams AL, Gornet MF, Burkus JK. CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol 2005; 26 (08) 2057-2066
- 55 Ghodasara N, Yi PH, Clark K, Fishman EK, Farshad M, Fritz J. Postoperative spinal CT: what the radiologist needs to know. Radiographics 2019; 39 (06) 1840-1861
- 56 Hauger O, Obeid I, Pelé E. Imaging of the fused spine. J Radiol 2010; 91 (9 Pt 2): 1035-1048
- 57 Proietti L, Perna A, Ricciardi L. et al. Radiological evaluation of fusion patterns after lateral lumbar interbody fusion: institutional case series. Radiol Med (Torino) 2021; 126 (02) 250-257
- 58 Schwab F, Blondel B, Chay E. et al. The comprehensive anatomical spinal osteotomy classification. Neurosurgery 2014; 74 (01) 112-120 ; discussion 120
- 59 Zeitoun R, Hussein M. Approach to interpret images produced by new generations of multidetector CT scanners in post-operative spine. Br J Radiol 2017; 90 (1079) 20170082
- 60 Anand N, Agrawal A, Ravinsky R, Khanderhoo B, Kahwaty S, Chung A. The prevalence of proximal junctional kyphosis (PJK) and proximal junctional failure (PJF) in patients undergoing circumferential minimally invasive surgical (cMIS) correction for adult spinal deformity: long-term 2- to 13-year follow-up. Spine Deform 2021; 9 (05) 1433-1441