CC BY 4.0 · Avicenna J Med 2023; 13(03): 138-150
DOI: 10.1055/s-0043-1772175
Review Article

Monitoring Macro- and Microcirculation in the Critically Ill: A Narrative Review

1   Department of Critical Care Medicine, King George's Medical University (KGMU), Lucknow, Uttar Pradesh, India
,
Akshyaya Pradhan
2   Department of Cardiology, King George's Medical University (KGMU), Lucknow, Uttar Pradesh, India
,
Suhail Sarwar Siddiqui
1   Department of Critical Care Medicine, King George's Medical University (KGMU), Lucknow, Uttar Pradesh, India
,
3   Faculty of Medical Sciences, King George's Medical University (KGMU), Lucknow, Uttar Pradesh, India
,
Timil Suresh
3   Faculty of Medical Sciences, King George's Medical University (KGMU), Lucknow, Uttar Pradesh, India
› Author Affiliations

Abstract

Circulatory shock is a common and important diagnosis in the critical care environment. Hemodynamic monitoring is quintessential in the management of shock. The currently used hemodynamic monitoring devices not only measure cardiac output but also provide data related to the prediction of fluid responsiveness, extravascular lung water, and also pulmonary vascular permeability. Additionally, these devices are minimally invasive and associated with fewer complications. The area of hemodynamic monitoring is progressively evolving with a trend toward the use of minimally invasive devices in this area. The critical care physician should be well-versed with current hemodynamic monitoring limitations and stay updated with the upcoming advances in this field so that optimal therapy can be delivered to patients in circulatory shock.



Publication History

Article published online:
05 September 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Pinsky MR. Hemodynamic evaluation and monitoring in the ICU. Chest 2007; 132 (06) 2020-2029
  • 2 Vincent JL, Rhodes A, Perel A. et al. Clinical review: update on hemodynamic monitoring–a consensus of 16. Crit Care 2011; 15 (04) 229
  • 3 Pinsky MR. Functional hemodynamic monitoring. Crit Care Clin 2015; 31 (01) 89-111
  • 4 Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134 (01) 172-178
  • 5 Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med 2016; 42 (03) 324-332
  • 6 Marik PE, Cavallazzi R. Does the CVP predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 2013; 41: 1774-1781
  • 7 Hadian M, Pinsky MR. Evidence-based review of the use of the pulmonary artery catheter: impact data and complications. Crit Care 2006; 10 (Suppl 3, Suppl 3): S8
  • 8 Marik PE. Obituary: pulmonary artery catheter 1970 to 2013. Ann Intensive Care 2013; 3 (01) 38
  • 9 De Backer D, Vincent JL. The pulmonary artery catheter: is it still alive?. Curr Opin Crit Care 2018; 24 (03) 204-208
  • 10 Sandham JD, Hull RD, Brant RF. et al; Canadian Critical Care Clinical Trials Group. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 2003; 348 (01) 5-14
  • 11 Richard C, Warszawski J, Anguel N. et al; French Pulmonary Artery Catheter Study Group. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2003; 290 (20) 2713-2720
  • 12 Harvey S, Harrison DA, Singer M. et al; PAC-Man study collaboration. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 2005; 366 (9484) 472-477
  • 13 Bing RJ, Heimbecker R, Falholt W. An estimation of the residual volume of blood in the right ventricle of normal and diseased human hearts in vivo. Am Heart J 1951; 42 (04) 483-502
  • 14 Nahouraii RA, Rowell SE. Static measures of preload assessment. Crit Care Clin 2010; 26 (02) 295-305
  • 15 Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 2002; 121 (06) 2000-2008
  • 16 Marik PE, Lemson J. Fluid responsiveness: an evolution of our understanding. Br J Anaesth 2014; 112 (04) 617-620
  • 17 Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care 2011; 1 (01) 1
  • 18 Cecconi M, Hofer C, Teboul JL. et al; FENICE Investigators, ESICM Trial Group. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med 2015; 41 (09) 1529-1537
  • 19 Weil MH, Henning RJ. New concepts in the diagnosis and fluid treatment of circulatory shock. Thirteenth annual Becton, Dickinson and Company Oscar Schwidetsky Memorial Lecture. Anesth Analg 1979; 58 (02) 124-132
  • 20 Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med 2006; 34 (05) 1333-1337
  • 21 Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 2009; 37 (09) 2642-2647
  • 22 Cavallaro F, Sandroni C, Antonelli M. Functional hemodynamic monitoring and dynamic indices of fluid responsiveness. Minerva Anestesiol 2008; 74 (04) 123-135
  • 23 Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids?. JAMA 2016; 316 (12) 1298-1309
  • 24 Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care 2016; 6 (01) 1-11
  • 25 Perel A. Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 1998; 89 (06) 1309-1310
  • 26 Zhang Z, Lu B, Sheng X, Jin N. Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis. J Anesth 2011; 25 (06) 904-916
  • 27 Teboul JL, Monnet X, Chemla D, Michard F. Arterial pulse pressure variation with mechanical ventilation. Am J Respir Crit Care Med 2019; 199 (01) 22-31
  • 28 Mahjoub Y, Lejeune V, Muller L. et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth 2014; 112 (04) 681-685
  • 29 Myatra SN, Monnet X, Teboul JL. Use of ‘tidal volume challenge’ to improve the reliability of pulse pressure variation. Crit Care 2017; 21 (01) 60
  • 30 Charron C, Caille V, Jardin F, Vieillard-Baron A. Echocardiographic measurement of fluid responsiveness. Curr Opin Crit Care 2006; 12 (03) 249-254
  • 31 Zhang Z, Xu X, Ye S, Xu L. Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. Ultrasound Med Biol 2014; 40 (05) 845-853
  • 32 Airapetian N, Maizel J, Alyamani O. et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients?. Crit Care 2015; 19: 400
  • 33 Monnet X, Rienzo M, Osman D. et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 2006; 34 (05) 1402-1407
  • 34 Monnet X, Teboul JL. Passive leg raising. Intensive Care Med 2008; 34 (04) 659-663
  • 35 Cavallaro F, Sandroni C, Marano C. et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med 2010; 36 (09) 1475-1483
  • 36 De Backer D, Pinsky MR. Can one predict fluid responsiveness in spontaneously breathing patients?. Intensive Care Med 2007; 33 (07) 1111-1113
  • 37 Alvarado Sánchez JI, Caicedo Ruiz JD, Diaztagle Fernández JJ, Amaya Zuñiga WF, Ospina-Tascón GA, Cruz Martínez LE. Predictors of fluid responsiveness in critically ill patients mechanically ventilated at low tidal volumes: systematic review and meta-analysis. Ann Intensive Care 2021; 11 (01) 28
  • 38 Mohammed I, Phillips C. Techniques for determining cardiac output in the intensive care unit. Crit Care Clin 2010; 26 (02) 355-364
  • 39 Teboul JL, Saugel B, Cecconi M. et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med 2016; 42 (09) 1350-1359
  • 40 Laupland KB, Bands CJ. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review. Can J Anaesth 2002; 49 (04) 393-401
  • 41 Singer M. Oesophageal Doppler. Curr Opin Crit Care 2009; 15 (03) 244-248
  • 42 Monnet X, Teboul JL. Transpulmonary thermodilution: advantages and limits. Crit Care 2017; 21 (01) 147
  • 43 Pearse RM, Ikram K, Barry J. Equipment review: an appraisal of the LiDCO plus method of measuring cardiac output. Crit Care 2004; 8 (03) 190-195
  • 44 Linton RA, Jonas MM, Tibby SM. et al. Cardiac output measured by lithium dilution and transpulmonary thermodilution in patients in a paediatric intensive care unit. Intensive Care Med 2000; 26 (10) 1507-1511
  • 45 Manecke GR. Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices 2005; 2 (05) 523-527
  • 46 Cannesson M, Musard H, Desebbe O. et al. The ability of stroke volume variations obtained with Vigileo/FloTrac system to monitor fluid responsiveness in mechanically ventilated patients. Anesth Analg 2009; 108 (02) 513-517
  • 47 Berton C, Cholley B. Equipment review: new techniques for cardiac output measurement–oesophageal Doppler, Fick principle using carbon dioxide, and pulse contour analysis. Crit Care 2002; 6 (03) 216-221
  • 48 Cholley BP, Payen D. Noninvasive techniques for measurements of cardiac output. Curr Opin Crit Care 2005; 11 (05) 424-429
  • 49 Marik PE. Noninvasive cardiac output monitors: a state-of the-art review. J Cardiothorac Vasc Anesth 2013; 27 (01) 121-134
  • 50 Brown JM. Use of echocardiography for hemodynamic monitoring. Crit Care Med 2002; 30 (06) 1361-1364
  • 51 Griffee MJ, Merkel MJ, Wei KS. The role of echocardiography in hemodynamic assessment of septic shock. Crit Care Clin 2010; 26 (02) 365-382
  • 52 Soliman-Aboumarie H, Breithardt OA, Gargani L, Trambaiolo P, Neskovic AN. How-to: focus cardiac ultrasound in acute settings. Eur Heart J Cardiovasc Imaging 2022; 23 (02) 150-153
  • 53 Kanji HD, McCallum J, Sirounis D, MacRedmond R, Moss R, Boyd JH. Limited echocardiography-guided therapy in subacute shock is associated with change in management and improved outcomes. J Crit Care 2014; 29 (05) 700-705
  • 54 Atkinson PR, Milne J, Diegelmann L. et al. Does point-of-care ultrasonography improve clinical outcomes in emergency department patients with undifferentiated hypotension? An international randomized controlled trial from the SHoC-ED investigators. Ann Emerg Med 2018; 72 (04) 478-489
  • 55 Pino RM, Singh J. Appropriate clinical use of lactate measurements. Anesthesiology 2021; 134 (04) 637-644
  • 56 Kruse O, Grunnet N, Barfod C. Blood lactate as a predictor for in-hospital mortality in patients admitted acutely to hospital: a systematic review. Scand J Trauma Resusc Emerg Med 2011; 19: 74
  • 57 Bakker J, Nijsten MW, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care 2013; 3 (01) 12
  • 58 Fuller BM, Dellinger RP. Lactate as a hemodynamic marker in the critically ill. Curr Opin Crit Care 2012; 18 (03) 267-272
  • 59 Jansen TC, van Bommel J, Schoonderbeek FJ. et al; LACTATE study group. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 2010; 182 (06) 752-761
  • 60 Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Emergency Medicine Shock Research Network (EMShockNet) Investigators. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA 2010; 303 (08) 739-746
  • 61 Bakker J, Postelnicu R, Mukherjee V. Lactate: where are we now?. Crit Care Clin 2020; 36 (01) 115-124
  • 62 Reinhart K, Bloos F. The value of venous oximetry. Curr Opin Crit Care 2005; 11 (03) 259-263
  • 63 Marx G, Reinhart K. Venous oximetry. Curr Opin Crit Care 2006; 12 (03) 263-268
  • 64 Kandel G, Aberman A. Mixed venous oxygen saturation. Its role in the assessment of the critically ill patient. Arch Intern Med 1983; 143 (07) 1400-1402
  • 65 Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 2004; 30 (08) 1572-1578
  • 66 Rivers E, Nguyen B, Havstad S. et al; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345 (19) 1368-1377
  • 67 Peake SL, Delaney A, Bailey M. et al; ARISE Investigators, ANZICS Clinical Trials Group. Goal-directed resuscitation for patients with early septic shock. N Engl J Med 2014; 371 (16) 1496-1506
  • 68 ProCESS Investigators. Yealy DM, Kellum JA, Huang DT. et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014; 370: 1683-1693 PubMed
  • 69 Mouncey PR, Osborn TM, Power GS. et al; ProMISe Trial Investigators. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 2015; 372 (14) 1301-1311
  • 70 Mallat J, Lemyze M, Tronchon L, Vallet B, Thevenin D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J Crit Care Med 2016; 5 (01) 47-56
  • 71 Ospina-Tascón GA, Hernández G, Cecconi M. Understanding the venous-arterial CO2 to arterial-venous O2 content difference ratio. Intensive Care Med 2016; 42 (11) 1801-1804
  • 72 Ait-Oufella H, Lemoinne S, Boelle PY. et al. Mottling score predicts survival in septic shock. Intensive Care Med 2011; 37 (05) 801-807
  • 73 Dumas G, Lavillegrand JR, Joffre J. et al. Mottling score is a strong predictor of 14-day mortality in septic patients whatever vasopressor doses and other tissue perfusion parameters. Crit Care 2019; 23 (01) 211
  • 74 Hernández G, Ospina-Tascón GA, Damiani LP. et al; The ANDROMEDA SHOCK Investigators and the Latin America Intensive Care Network (LIVEN). Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA 2019; 321 (07) 654-664
  • 75 Zampieri FG, Damiani LP, Bakker J. et al. Effects of a resuscitation strategy targeting peripheral perfusion status versus serum lactate levels among patients with septic shock. A Bayesian reanalysis of the ANDROMEDA-SHOCK trial. Am J Respir Crit Care Med 2020; 201 (04) 423-429
  • 76 Guven G, Hilty MP, Ince C. Microcirculation: physiology, pathophysiology, and clinical application. Blood Purif 2020; 49 (1-2): 143-150
  • 77 Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care 2015; 19 (Suppl 3): S8 PubMed
  • 78 Merz T, Denoix N, Huber-Lang M, Singer M, Radermacher P, McCook O. Microcirculation vs. mitochondria-what to target?. Front Med (Lausanne) 2020; 7: 416
  • 79 Dubin A, Henriquez E, Hernández G. Monitoring peripheral perfusion and microcirculation. Curr Opin Crit Care 2018; 24 (03) 173-180
  • 80 De Backer D, Hollenberg S, Boerma C. et al. How to evaluate the microcirculation: report of a round table conference. Crit Care 2007; 11 (05) R101