CC BY 4.0 · Indian J Med Paediatr Oncol 2023; 44(05): 474-481
DOI: 10.1055/s-0043-1772204
Review Article

Flow Cytometry in the Diagnostic Laboratory Workup of Acute Lymphoblastic Leukemias

1   Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
,
1   Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
,
Nabhajit Mallik
1   Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
› Author Affiliations
Funding None.

Abstract

Acute lymphoblastic leukemias (ALLs) are hematological neoplasms characterized by clonal proliferation of lymphoid blasts, which can be B- or T-cell type. Flow cytometric immunophenotyping is an integral component in establishing blast lineage during the diagnostic workup of ALLs, aiding in appropriate therapy, prognostication, and monitoring of the disease. The current review focuses on the utility of flow cytometry in the workup of ALLs, including the usefulness of various antibodies and pitfalls in diagnosis.



Publication History

Article published online:
04 November 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Gujral S, Badrinath Y, Kumar A. et al. Immunophenotypic profile of acute leukemia: critical analysis and insights gained at a tertiary care center in India. Cytometry B Clin Cytom 2009; 76 (03) 199-205
  • 2 Paul S, Kantarjian H, Jabbour EJ. Adult acute lymphoblastic leukemia. Mayo Clin Proc 2016; 91 (11) 1645-1666
  • 3 Wood BL. Flow cytometry in the diagnosis and monitoring of acute leukemia in children. J Hematop 2015; 8: 191-199
  • 4 Rezaei MS, Esfandiari N, Refoua S, Shamaei M. Characterization of immunophenotypic aberrancies in adult and childhood acute lymphoblastic leukemia: lessons from regional variation. Iran J Pathol 2020; 15 (01) 1-7
  • 5 DiGiuseppe JA. . Acute lymphoblastic leukemia/lymphoma: diagnosis and minimal residual disease detection by flow cytometric immunophenotyping. In: Detrick B, Schmitz JL, Hamilton RG, eds. Manual of Molecular and Clinical Laboratory Immunology. Washington, DC: ASM Press; 2016
  • 6 Sędek Ł, Bulsa J, Sonsala A. et al. The immunophenotypes of blast cells in B-cell precursor acute lymphoblastic leukemia: how different are they from their normal counterparts?. Cytometry B Clin Cytom 2014; 86 (04) 329-339
  • 7 McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 2001; 98 (08) 2498-2507
  • 8 van Dongen JJM, Lhermitte L, Böttcher S. et al; EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708). EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; 26 (09) 1908-1975
  • 9 Thalhammer-Scherrer R, Mitterbauer G, Simonitsch I. et al. The immunophenotype of 325 adult acute leukemias: relationship to morphologic and molecular classification and proposal for a minimal screening program highly predictive for lineage discrimination. Am J Clin Pathol 2002; 117 (03) 380-389
  • 10 Seegmiller AC, Kroft SH, Karandikar NJ, McKenna RW. Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol 2009; 132 (06) 940-949
  • 11 Gupta M, Monga L, Mehrotra D, Chhabra S, Singhal S, Sen R. Immunophenotypic aberrancies in acute leukemia: a tertiary care centre experience. Oman Med J 2021; 36 (01) e218-e218
  • 12 Kulis J, Sędek Ł, Słota Ł, Perkowski B, Szczepański T. Commonly assessed markers in childhood BCP-ALL diagnostic panels and their association with genetic aberrations and outcome prediction. Genes (Basel) 2022; 13 (08) 1374
  • 13 Chernysheva O, Grivtsova LY, Popa A, Tupitsyn NN. . B-cell precursors: immunophenotypic features in the detection of minimal residual disease in acute leukemia. In: Aribi M, ed. Normal and Malignant B-Cell [Internet]. IntechOpen; 2020. Accessed June 20, 2022 at: https://www.intechopen.com/books/normal-and-malignant-b-cell/b-cell-precursors-immunophenotypic-features-in-the-detection-of-minimal-residual-disease-in-acute-le
  • 14 Solly F, Angelot F, Garand R. et al. CD304 is preferentially expressed on a subset of B-lineage acute lymphoblastic leukemia and represents a novel marker for minimal residual disease detection by flow cytometry. Cytometry A 2012; 81 (01) 17-24
  • 15 Sherif L, Azab M, Al-Akad G, Zakaria M, Atfy M, Sorour S. Cluster of differentiation 97 as a biomarker for the detection of minimal residual disease in common acute lymphoblastic leukemia. Egypt J Haematol. 2017; 42: 81-87
  • 16 Kamazani FM, Bahoush GR, Aghaeipour M, Vaeli S, Amirghofran Z. CD44 and CD27 expression pattern in B cell precursor acute lymphoblastic leukemia and its clinical significance. Med Oncol 2013; 30 (01) 359
  • 17 DiGiuseppe JA, Fuller SG, Borowitz MJ. Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: potential usefulness in minimal residual disease detection. Cytometry B Clin Cytom 2009; 76 (02) 150-155
  • 18 Bene MC, Castoldi G, Knapp W. et al; European Group for the Immunological Characterization of Leukemias (EGIL). Proposals for the immunological classification of acute leukemias. Leukemia 1995; 9 (10) 1783-1786
  • 19 Guillaume N, Penther D, Vaida I. et al. CD66c expression in B-cell acute lymphoblastic leukemia: strength and weakness. Int J Lab Hematol 2011; 33 (01) 92-96
  • 20 Owaidah TM, Rawas FI, Al Khayatt MF, Elkum NB. Expression of CD66c and CD25 in acute lymphoblastic leukemia as a predictor of the presence of BCR/ABL rearrangement. Hematol Oncol Stem Cell Ther 2008; 1 (01) 34-37
  • 21 Suggs JL, Cruse JM, Lewis RE. Aberrant myeloid marker expression in precursor B-cell and T-cell leukemias. Exp Mol Pathol 2007; 83 (03) 471-473
  • 22 Kulis J, Wawrowski Ł, Sędek Ł. et al. Machine learning based analysis of relations between antigen expression and genetic aberrations in childhood B-cell precursor acute lymphoblastic leukaemia. J Clin Med 2022; 11 (09) 2281
  • 23 Hrusák O, Porwit-MacDonald A. Antigen expression patterns reflecting genotype of acute leukemias. Leukemia 2002; 16 (07) 1233-1258
  • 24 Schwartz S, Rieder H, Schläger B, Burmeister T, Fischer L, Thiel E. Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangement and a CD10(-)/CD24(-)/CD65s(+)/CD15(+) B-cell phenotype. Leukemia 2003; 17 (08) 1589-1595
  • 25 Tsagarakis NJ, Papadhimitriou SI, Pavlidis D. et al. Flow cytometric predictive scoring systems for common fusions ETV6/RUNX1, BCR/ABL1, TCF3/PBX1 and rearrangements of the KMT2A gene, proposed for the initial cytogenetic approach in cases of B-acute lymphoblastic leukemia. Int J Lab Hematol 2019; 41 (03) 364-372
  • 26 Djokic M, Björklund E, Blennow E, Mazur J, Söderhäll S, Porwit A. Overexpression of CD123 correlates with the hyperdiploid genotype in acute lymphoblastic leukemia. Haematologica 2009; 94 (07) 1016-1019
  • 27 Vetter T, Borowski A, Wohlmann A. et al. Blockade of thymic stromal lymphopoietin (TSLP) receptor inhibits TSLP-driven proliferation and signalling in lymphoblasts from a subset of B-precursor ALL patients. Leuk Res 2016; 40: 38-43
  • 28 Pastorczak A, Sedek L, Braun M. et al. Surface expression of cytokine receptor-like factor 2 increases risk of relapse in pediatric acute lymphoblastic leukemia patients harboring IKZF1 deletions. Oncotarget 2018; 9 (40) 25971-25982
  • 29 Tembhare P, Badrinath Y, Ghogale S. et al. A novel and easy FxCycle™ violet based flow cytometric method for simultaneous assessment of DNA ploidy and six-color immunophenotyping. Cytometry A 2016; 89 (03) 281-291
  • 30 Gupta N, Parihar M, Banerjee S. et al. FxCycle™ based ploidy correlates with cytogenetic ploidy in B-cell acute lymphoblastic leukemia and is able to detect the aneuploid minimal residual disease clone. Cytometry B Clin Cytom 2019; 96 (05) 359-367
  • 31 Thomas DA, O'Brien S, Faderl S. et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol 2010; 28 (24) 3880-3889
  • 32 Maury S, Chevret S, Thomas X. et al; for GRAALL. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med 2016; 375 (11) 1044-1053
  • 33 Jabbour E, Richard-Carpentier G, Sasaki Y. et al. Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematol 2020; 7 (07) e523-e533
  • 34 Jasinski S, De Los Reyes FA, Yametti GC, Pierro J, Raetz E, Carroll WL. Immunotherapy in pediatric B-cell acute lymphoblastic leukemia: advances and ongoing challenges. Paediatr Drugs 2020; 22 (05) 485-499
  • 35 Guru Murthy GS, Pondaiah SK, Abedin S, Atallah E. Incidence and survival of T-cell acute lymphoblastic leukemia in the United States. Leuk Lymphoma 2019; 60 (05) 1171-1178
  • 36 Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood 2008; 111 (08) 3941-3967
  • 37 DiGiuseppe JA, Wood BL. Applications of flow cytometric immunophenotyping in the diagnosis and posttreatment monitoring of B and T lymphoblastic leukemia/lymphoma. Cytometry B Clin Cytom 2019; 96 (04) 256-265
  • 38 van Dongen JJ, Krissansen GW, Wolvers-Tettero IL. et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood 1988; 71 (03) 603-612
  • 39 Gujral S, Tembhare P, Badrinath Y, Subramanian PG, Kumar A, Sehgal K. Intracytoplasmic antigen study by flow cytometry in hematolymphoid neoplasm. Indian J Pathol Microbiol 2009; 52 (02) 135-144
  • 40 Hashimoto M, Yamashita Y, Mori N. Immunohistochemical detection of CD79a expression in precursor T cell lymphoblastic lymphoma/leukaemias. J Pathol 2002; 197 (03) 341-347
  • 41 Coustan-Smith E, Mullighan CG, Onciu M. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009; 10 (02) 147-156
  • 42 Sin CF, Man PM. Early T-cell precursor acute lymphoblastic leukemia: diagnosis, updates in molecular pathogenesis, management, and novel therapies. Front Oncol 2021; 11: 750789
  • 43 Falcão RP, Garcia AB. Expression of CD45RA (naive) and CD45RO (memory) antigens in T-acute lymphoblastic leukaemia. Br J Haematol 1993; 85 (03) 483-486
  • 44 Cavalcanti Júnior GB, Savino W, Pombo-de-Oliveira MS. CD44 expression in T-cell lymphoblastic leukemia. Braz J Med Biol Res 1994; 27 (09) 2259-2266
  • 45 Lhermitte L, de Labarthe A, Dupret C. et al. Most immature T-ALLs express Ra-IL3 (CD123): possible target for DT-IL3 therapy. Leukemia 2006; 20 (10) 1908-1910
  • 46 Khoury JD, Solary E, Abla O. et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 2022; 36: 1703-1719
  • 47 Bayón-Calderón F, Toribio ML, González-García S. Facts and challenges in immunotherapy for T-cell acute lymphoblastic leukemia. Int J Mol Sci 2020; 21 (20) 7685
  • 48 Caracciolo D, Mancuso A, Polerà N. et al. The emerging scenario of immunotherapy for T-cell acute lymphoblastic leukemia: advances, challenges and future perspectives. Exp Hematol Oncol 2023; 12 (01) 5