CC BY 4.0 · Arq Neuropsiquiatr 2023; 81(10): 876-882
DOI: 10.1055/s-0043-1772830
Original Article

Differences between hemispheres and in saccade latency regarding volleyball athletes and non-athletes during saccadic eye movements: an analysis using EEG

Diferenças inter-hemisféricas e na latência sacádica entre atletas de voleibol e não atletas durante movimentos oculares sacádicos: uma análise usando EEG
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
3   Universidade Veiga de Almeida, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
4   Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro RJ, Brazil.
,
5   Universidade Federal do Piauí, Departamento de Fisioterapia, Teresina PI, Brazil.
,
5   Universidade Federal do Piauí, Departamento de Fisioterapia, Teresina PI, Brazil.
,
6   Universidade Federal Fluminense, Hospital Universitário Antônio Pedro, Niterói RJ, Brazil.
,
7   Medical School Hamburg, Faculty of Human Sciences, Hamburg, Germany.
8   Reykjavik University, Department of Sport Science, Reykjavik, Iceland.
,
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
9   Universidade Federal do Rio de Janeiro, Departamento de Engenharia Biomédica, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
› Institutsangaben

Abstract

Background The saccadic eye movement is responsible for providing focus to a visual object of interest to the retina. In sports like volleyball, identifying relevant targets quickly is essential to a masterful performance. The training improves cortical regions underlying saccadic action, enabling more automated processing in athletes.

Objective We investigated changes in the latency during the saccadic eye movement and the absolute theta power on the frontal and prefrontal cortices during the execution of the saccadic eye movement task in volleyball athletes and non-athletes. We hypothesized that the saccade latency and theta power would be lower due to training and perceptual-cognitive enhancement in volleyball players.

Methods We recruited 30 healthy volunteers: 15 volleyball athletes (11 men and 4 women; mean age: 15.08 ± 1.06 years) and 15 non-athletes (5 men and 10 women; mean age: 18.00 ± 1.46 years). All tasks were performed simultaneously with electroencephalography signal recording.

Results The latency of the saccadic eye movement presented a significant difference between the groups; a shorter time was observed among the athletes, associated with the players' superiority in terms of attention level. During the experiment, the athletes observed a decrease in absolute theta power compared to non-athletes on the electrodes of each frontal and prefrontal area.

Conclusion In the present study, we observed the behavior of reaction time and absolute theta power in athletes and non-athletes during a saccadic movement task. Our findings corroborate the premise of cognitive improvement, mainly due to the reduction of saccadic latency and lower beta power, validating the neural efficiency hypothesis.

Resumo

Antecedentes O movimento ocular sacádico é responsável por dar foco a um objeto visual de interesse para a retina. Em esportes como o vôlei, identificar alvos relevantes o mais rápido possível é essencial para se ter um desempenho magistral. O treinamento melhora as regiões corticais subjacentes à ação sacádica, e permite um processamento mais automatizado em atletas.

Objetivo Investigamos as mudanças na latência durante o movimento ocular sacádico e a potência teta absoluta nos córtices frontal e pré-frontal durante a execução da tarefa de movimento ocular sacádico em atletas e não atletas de voleibol. Nossa hipótese é a de que a latência sacádica e a potência teta seriam menores em atletas devido ao treinamento e ao aprimoramento perceptivo-cognitivo em jogadores de voleibol.

Métodos Ao todo, 30 voluntários saudáveis foram recrutados para este estudo: 15 atletas de voleibol (11 homens e 4 mulheres; idade média: 15,08 ± 1,06 anos) e 15 não atletas (5 homens e 10 mulheres; idade média: 18,00 ± 1,46 anos). Todas as tarefas foram realizadas simultaneamente com o registro do sinal eletroencefalográfico.

Resultados O resultado da latência do movimento ocular sacádico apresentou diferença significativa entre os grupos, sendo observado menor tempo entre os atletas, associado à superioridade dos jogadores em termos de nível de atenção. Durante o experimento, nos eletrodos de cada área frontal e pré-frontal, observou-se uma diminuição na potência teta absoluta nos atletas em comparação aos não atletas.

Conclusão Neste estudo, observou-se o comportamento do tempo de reação e da potência teta absoluta em atletas e não atletas durante uma tarefa de movimento sacádico. Nossos achados corroboram a premissa de melhora cognitiva, principalmente pela redução da latência sacádica e menor potência beta, o que valida a hipótese de eficiência neural.

Authors' Contributions

RV: formal analysis, writing of the original draft, writing – review and editing, data curation, and visualization; JB: conceptualization and investigation; EC, EN, MG, and JDG: investigation and data curation; VHB, ST, MO, and HB: validation; MG: methodology, software, formal analysis, supervision; BV: conceptualization, methodology, supervision, project administration; PR: conceptualization, methodology, formal analysis, writing – review and editing, visualization, supervision, and project administration.




Publikationsverlauf

Eingereicht: 28. Oktober 2022

Angenommen: 16. Juni 2023

Artikel online veröffentlicht:
18. Oktober 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Babu RJ, Lillakas L, Irving EL. Dynamics of saccadic adaptation: differences between athletes and nonathletes. Optom Vis Sci 2005; 82 (12) 1060-1065
  • 2 Guidetti G, Guidetti R, Manfredi M, Manfredi M, Lucchetta A, Livio S. Saccades and driving. Acta Otorhinolaryngol Ital 2019; 39 (03) 186-196
  • 3 Afonso J, Garganta J, McRobert A, Williams AM, Mesquita I. The perceptual cognitive processes underpinning skilled performance in volleyball: evidence from eye-movements and verbal reports of thinking involving an in situ representative task. J Sports Sci Med 2012; 11 (02) 339-345
  • 4 McAuliffe J. Differences in attentional set between athletes and nonathletes. J Gen Psychol 2004; 131 (04) 426-437
  • 5 Piras A, Lobietti R, Squatrito S. A study of saccadic eye movement dynamics in volleyball: comparison between athletes and non-athletes. J Sports Med Phys Fitness 2010; 50 (01) 99-108
  • 6 Scharfen H-E, Memmert D. The Relationship Between Cognitive Functions and Sport-Specific Motor Skills in Elite Youth Soccer Players. Front Psychol 2019; 10: 817
  • 7 Chuang L-Y, Huang C-J, Hung T-M. The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. Int J Psychophysiol 2013; 90 (03) 321-328
  • 8 Formenti D, Trecroci A, Duca M. et al. Volleyball-Specific Skills and Cognitive Functions Can Discriminate Players of Different Competitive Levels. J Strength Cond Res 2022; 36 (03) 813-819
  • 9 Fleddermann M-T, Zentgraf K. Tapping the Full Potential? Jumping Performance of Volleyball Athletes in Game-Like Situations. Front Psychol 2018; 9: 1375
  • 10 Velasques B, Bittencourt J, Diniz C. et al. Changes in saccadic eye movement (SEM) and quantitative EEG parameter in bipolar patients. J Affect Disord 2013; 145 (03) 378-385
  • 11 Bittencourt J, Machado S, Teixeira S. et al. Alpha-band power in the left frontal cortex discriminates the execution of fixed stimulus during saccadic eye movement. Neurosci Lett 2012; 523 (02) 148-153
  • 12 Kim TD, Kabir M, Gold JI. Coupled Decision Processes Update and Maintain Saccadic Priors in a Dynamic Environment. J Neurosci 2017; 37 (13) 3632-3645
  • 13 Zhang J, Shi Y, Wang C. et al. Preshooting Electroencephalographic Activity of Professional Shooters in a Competitive State. Comput Intell Neurosci 2021; 2021: 6639865
  • 14 Baumeister J, Reinecke K, Liesen H, Weiss M. Cortical activity of skilled performance in a complex sports related motor task. Eur J Appl Physiol 2008; 104 (04) 625-631
  • 15 Cartier C, Diniz C, Di Girogio L. et al. Changes in absolute theta power in bipolar patients during a saccadic attention task. Psychiatry Res 2015; 228 (03) 785-790
  • 16 Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci 2014; 18 (08) 414-421
  • 17 Velasques B, Machado S, Paes F. et al. Hemispheric differences over frontal theta-band power discriminate between stimulus- versus memory-driven saccadic eye movement. Neurosci Lett 2011; 504 (03) 204-208
  • 18 Jafarzadehpur E, Aazami N, Bolouri B. Comparison of saccadic eye movements and facility of ocular accommodation in female volleyball players and non-players. Scand J Med Sci Sports 2007; 17 (02) 186-190
  • 19 Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971; 9 (01) 97-113
  • 20 Meng F-W, Yao Z-F, Chang EC, Chen Y-L. Team sport expertise shows superior stimulus-driven visual attention and motor inhibition. PLoS One 2019; 14 (05) e0217056
  • 21 Ghasemi A, Momeni M, Jafarzadehpur E, Rezaee M, Taheri H. Visual skills involved in decision making by expert referees. Percept Mot Skills 2011; 112 (01) 161-171
  • 22 Conejero Suárez M, Prado Serenini AL, Fernández-Echeverría C, Collado-Mateo D, Moreno Arroyo MP. The Effect of Decision Training, from a Cognitive Perspective, on Decision-Making in Volleyball: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2020; 17 (10) 3628
  • 23 Morrillo M, Di Russo F, Pitzalis S, Spinelli D. Latency of prosaccades and antisaccades in professional shooters. Med Sci Sports Exerc 2006; 38 (02) 388-394
  • 24 Vansteenkiste P, Vaeyens R, Zeuwts L, Philippaerts R, Lenoir M. Cue usage in volleyball: a time course comparison of elite, intermediate and novice female players. Biol Sport 2014; 31 (04) 295-302
  • 25 Findlay JM. Saccadic eye movement programming: sensory and attentional factors. Psychol Res 2009; 73 (02) 127-135
  • 26 Zhang J, Watanabe K. Differences in saccadic latency and express saccades between skilled and novice ball players in tracking predictable and unpredictable targets at two visual angles. Percept Mot Skills 2005; 100 (3 Pt 2): 1127-1136
  • 27 Ceyte H, Lion A, Caudron S, Perrin P, Gauchard GC. Visuo-oculomotor skills related to the visual demands of sporting environments. Exp Brain Res 2017; 235 (01) 269-277
  • 28 Hogendoorn H. Voluntary Saccadic Eye Movements Ride the Attentional Rhythm. J Cogn Neurosci 2016; 28 (10) 1625-1635
  • 29 De Waelle S, Warlop G, Lenoir M, Bennett SJ, Deconinck FJA. The development of perceptual-cognitive skills in youth volleyball players. J Sports Sci 2021; 39 (17) 1911-1925
  • 30 Fortin-Guichard D, Laflamme V, Julien A-S, Trottier C, Grondin S. Decision-making and dynamics of eye movements in volleyball experts. Sci Rep 2020; 10 (01) 17288
  • 31 Yamasaki H, LaBar KS, McCarthy G. Dissociable prefrontal brain systems for attention and emotion. Proc Natl Acad Sci U S A 2002; 99 (17) 11447-11451
  • 32 Domic-Siede M, Irani M, Valdés J, Perrone-Bertolotti M, Ossandón T. Theta activity from frontopolar cortex, mid-cingulate cortex and anterior cingulate cortex shows different roles in cognitive planning performance. Neuroimage 2021; 226: 117557
  • 33 Kokubu M, Ando S, Kida N, Oda S. Interference effects between saccadic and key-press reaction times of volleyball players and nonathletes. Percept Mot Skills 2006; 103 (03) 709-716
  • 34 Sanfim A, Velasques B, Machado S. et al. Analysis of slow- and fast-α band asymmetry during performance of a saccadic eye movement task: dissociation between memory- and attention-driven systems. J Neurol Sci 2012; 312 (1-2): 62-67
  • 35 Montuori S, D'Aurizio G, Foti F. et al. Executive functioning profiles in elite volleyball athletes: Preliminary results by a sport-specific task switching protocol. Hum Mov Sci 2019; 63: 73-81
  • 36 Schneiders JA, Opitz B, Tang H. et al. The impact of auditory working memory training on the fronto-parietal working memory network. Front Hum Neurosci 2012; 6: 173