Synlett, Table of Contents Synlett 2025; 36(07): 894-898DOI: 10.1055/s-0043-1773495 letter Coupling Reaction of Aryl Halides with Orthoformate Ester Saki Shigemura , Takuya Kurahashi Recommend Article Abstract Buy Article All articles of this category Abstract Herein, we report that orthoformate ester and N,N-dimethylformamide di-tert-butyl acetal can be a source of alkoxy radicals. We have developed a coupling reaction with aryl halides as a way of utilizing them. This has led to the synthesis of aromatic ethers with tertiary alkoxy groups, which are generally considered difficult to synthesize. Key word Key wordC–O bond formation - hydrogen atom transfer - tertiary alkoxy group - photoredox reaction Full Text References References and Notes 1a Majetich G, Wheless K. Tetrahedron 1995; 51: 7095 1b Hartung J. Eur. J. Org. Chem. 2001; 4: 619 1c Walling C, Wagner PJ. J. Am. Chem. Soc. 1964; 86: 3368 1d Salamone M, Bietti M. Acc. Chem. Res. 2015; 48: 2895 1e Wu X, Wang M, Huna L, Wang D, Wang J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 1640 2a Barthelemy A, Tuccio B, Maginer E, Dagousset G. Angew. Chem. Int. Ed. 2018; 57: 13790 2b Banoun C, Bourdreux F, Magnier E, Dagousset G. Org. Lett. 2021; 23: 8926 2c Barthelemy A, Tuccio B, Madier E, Dagousset G. Synlett 2019; 30: 1489 3 Yayla HG, Wang H, Tarantino KT, Orbe HS, Knowles RR. J. Am. Chem. Soc. 2016; 138: 10794 4 Guo J, Hu A, Chen Y, Sun J, Tang H, Zuo Z. Angew. Chem. Int. Ed. 2016; 55: 15319 Already reported methods for the formation of alkoxy radicals, see: 5a Chang L, An Q, Duan L, Feng K, Zuo Z. Chem. Rev. 2022; 122: 2429 5b Tsui E, Wang H, Knowls RR. Chem. Sci. 2020; 11: 11124 5c Kim I, Park B, Kang G, Kim J, Lee H, Baik M, Hong S. Angew. Chem. Int. Ed. 2018; 57: 15517 Methyl esterification of aldehydes with trimethyl orthoformate, see: 6a Jiang B, Xu B, Wang M, Li Z, Liu D, Zhang S. Asian J. Org. Chem. 2018; 7: 977 Methyl esterification of aldehydes with trimethyl orthoformate, see: 6b Rhee H, Kim JY. Tetrahedron Lett. 1998; 39: 1365 Trimethyl orthoformate is used as a methyl radical source, see: 6c Kariofillis SK, Shields BJ, Tekle-Smith MA, Zacuto MJ, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7683 7 For additional information and control experiments, see the Supporting Information. 8 Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature 2012; 492: 234 9a Parasram M, Shields BJ, Ahmad O, Knauber T, Doyle AG. ACS Catal. 2020; 10: 5821 9b Luo J, Zhang J. ACS Catal. 2016; 6: 873 9c Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353 10a Jeffrey JL, Terrett JA, MacMillan DW. C. Science 2015; 349: 1532 10b Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2017; 139: 11353 11a Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437 11b Huang L, Zhu C, Yi L, Yue H, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 457 12a Nishino S, Sudo K, Kurahashi T. Org. Lett. 2024; 26: 4049 12b Nishino S, Kurahashi T. Chem. Lett. 2024; 53: upae088 12c Nishino S, Kurahashi T. Chem. Lett. 2024; 53: upae111 12d Du X, Cheng-Sánchez I, Nevado C. J. Am. Chem. Soc. 2023; 145: 12532 12e Lv P, Wang A, Xie X, Chen Y, Liu Y. Org. Lett. 2023; 25: 3319 12f Huang L, Zhu C, Yi L, Yue H, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 457 13 Noble A, McCarver J, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624 14 Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719 15 For additional information and control experiments, see the Supporting Information. 16 For additional information and control experiments, see the Supporting Information. 17 Khramtsov V, Berliner LJ, Clanton TL. Free Radical Biol. Med. 2001; 30: 1099 18 Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW. C. Nature 2015; 524: 330 19 Cavedon C, Madani A, Seeberger PH, Pieber B. Org. Lett. 2019; 21: 5331 20 Kibriya G, Samanta S, Luna S, Mondal S, Halra A. J. Org. Chem. 2017; 82: 13722 21 Luo Z, Lu C, Histand G, Lin D. J. Org. Chem. 2022; 87: 11558 22 General Procedure for 3a In the glovebox, a 5 mL glass vial, equipped with a Teflon stir bar, was charged with NiBr2·glyme (15.5 mg, 50.0 μmol, 0.100 equiv), dtbbpy (20.2 mg, 75.0 μmol, 0.150 equiv), and trimethyl orthoformate (5.00 mL). The nickel catalyst solution was stirred for 20 min, forming a green suspension. To a separate 5 mL glass vial, equipped with a Teflon stir bar, was added 4CzIPN (11.8 mg, 15.0 μmol, 0.0300 equiv) and trimethyl orthoformate (3.00 mL). The photoredox catalyst solution was stirred for 10 min. Meanwhile, a 12 mL borosilicate reaction tube with a Teflon stir bar was charged with methyl 4-bromobenzoate (215 mg, 0.500 mmol), K3PO4 (212 mg, 1.00 mmol, 2.00 equiv), quinuclidine (5.50 mg, 50.0 μmol, 0.100 equiv), and trimethyl orthoformate (2.00 mL). The photocatalyst solution and nickel catalyst solutions were then added sequentially (total solvent volume: 10.0 mL, 50.0 μM). The reaction tube was capped with a Teflon septum cap, sealed with electrical tape, and removed from the glovebox. The reaction was stirred for 20 h while illuminating with 427 nm Kessil LED lump placed horizontally at 2 cm distances on either side of the reaction tube (Scheme S1 and S2). Upon completion, the reaction mixture was filtered through Celite and washed with dichloromethane. The residue was purified by column chromatography (20 cm × 300 cm, SiO2 60g, hexane/ethyl acetate = 10/1). Compound 3a: yield 77%, colorless solid. 1H NMR (400 MHz, CDCl3): δ 7.99–8.01 (d, J = 8.93 Hz, 2 H), 6.91–6.93 (d, J = 8.93 Hz, 2 H) 3.89 (s, 3 H), 3.86 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 167.0, 163.4, 131.7, 122.7, 113.7, 55.5, 52.0 ppm. HRMS (ESI): m/z [M + H]+ calcd for C9H11O3: 167.0708; found: 167.0692. Supplementary Material Supplementary Material Supporting Information