Subscribe to RSS
DOI: 10.1055/s-0043-1773504
Total Synthesis of the Prenylated Indole Alkaloid (±)-Notoamide N via an Electrochemically Mediated Vilsmeier–Haack Formylation of a Chlorinated Indole
This work was funded by the National Natural Science Foundation of China (Grant Nos. 22250410259, 22250410258, and 22301104), the Guangdong Science and Technology Plan-International Cooperation Topic Program (Grant No. 2023A0505050093) and the Ministry of Science and Technology of the People’s Republic of China.
Abstract
A total synthesis of the racemic modification of the prenylated indole alkaloid notoamide N has been realised. A crucial step involved the electrochemically mediated Vilsmeier–Haack formylation of a chlorinated 1,7-dihydropyrano[2,3-g]indole. The product aldehyde was engaged in biomimetic and tandem aldol condensation/intramolecular Diels–Alder reactions with a diketopiperazine derivative to give a diazabicyclo[2.2.2]octane-containing adduct. Epoxidation of this adduct led, via an in situ semi-pinacolic rearrangement of the initially formed oxirane, to the targeted spiro-oxindole notoamide N.
Keywords
aldol reaction - cycloaddition - electrochemistry - epoxidation - rearrangement - total synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773504. Included are an outline of the general synthetic protocols employed in this study, plots arising from the single-crystal X-ray analysis of compounds 11, 13, and 18; tabular comparison of the 13C{1H} NMR spectral data obtained on synthetically derived compound 6 with those reported in the literature for notoamide N; 1H and 13C{1H} NMR spectra of compounds 6 and 9–26.
- Supporting Information
Publication History
Received: 07 October 2024
Accepted after revision: 21 October 2024
Article published online:
02 January 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Miller KA, Williams RM. Chem. Soc. Rev. 2009; 38: 3160
- 1b Finefield JM, Frisvad JC, Sherman DH, Williams RM. J. Nat. Prod. 2012; 75: 812
- 1c Zhang B, Zheng W, Wang X, Sun D, Li C. Angew. Chem. Int. Ed. 2016; 55: 10435
- 1d Klas KR, Kato H, Frisvad JC, Yu F, Newmister SA, Fraley AE, Sherman DH, Tsukamoto S, Williams RM. Nat. Prod. Rep. 2018; 35: 532
- 1e Li F, Zhang Z, Zhang G, Che Q, Zhu T, Gu Q, Li D. Org. Lett. 2018; 20: 1138
- 1f Li H, Sun W, Deng M, Zhou Q, Wang J, Liu J, Chen C, Qi C, Luo Z, Xue Y, Zhu H, Zhang Y. J. Org. Chem. 2018; 83: 8483
- 1g Mukai K, de Sant’Ana DP, Hirooka Y, Mercado-Marin EV, Stephens DE, Kou KG. M, Richter SC, Kelley N, Sarpong R. Nat. Chem. 2018; 10: 38
- 1h Li H, Xu D, Sun W, Yang B, Li F, Liu M, Wang J, Xue Y, Hu Z, Zhang Y. J. Nat. Prod. 2019; 82: 2181
- 1i Godfrey RC, Jones HE, Green NJ, Lawrence AL. Chem. Sci. 2022; 13: 1313
- 2 Qian-Cutrone J, Huang S, Shu Y.-Z, Vyas D, Fairchild C, Menendez A, Krampitz K, Dalterio R, Klohr SE, Gao Q. J. Am. Chem. Soc. 2002; 124: 14556
- 3 Cai S, Luan Y, Kong X, Zhu T, Gu Q, Li D. Org. Lett. 2013; 15: 2168
- 4 Kagiyama I, Kato H, Nehira T, Frisvad JC, Sherman DH, Williams RM, Tsukamoto S. Angew. Chem. Int. Ed. 2016; 55: 1128
- 5 Fraley AE, Sherman DH. FEBS J. 2020; 287: 1381
- 6 Greshock TJ, Grubbs AW, Jiao P, Wicklow DT, Gloer JB, Williams RM. Angew. Chem. Int. Ed. 2008; 47: 3573
- 7 Trost BM, Brennan MK. Synthesis 2009; 3003
- 8 Tsukamoto S, Kawabata T, Kato H, Greshock TJ, Hirota H, Ohta T, Williams RM. Org. Lett. 2009; 11: 1297
- 9a Xu Z, Liang X.-T, Lan P, Banwell MG. Org. Chem. Front. 2024; 11: 2433
- 9b Xu Z, Liang X.-T, White LV, Banwell MG, Tan S. J. Org. Chem. 2024; 89: 12639
- 10 Huang C, Qian X.-Y, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 6650
- 11 This ester was readily prepared by triflation of commercially-derived 2,2-diethoxyethan-1-ol under standard conditions, see: Harvey MJ. Dissertation. The Australian National University; Australia: 2006
- 12 This compound appears to have been reported previously but no spectral data were provided, see: Devi A, Bharali MM, Lee S, Park Y.-B, Saikia L, Saha RA, Kalita T, Kalita D, Biswas S, Bora TJ, Khanam SA, Bania KK. Catal. Sci. Technol. 2024; 14: 2400
- 13 Schkeryantz JM, Woo JC. G, Siliphaivanh P, Depew KM, Danishefsky SJ. J. Am. Chem. Soc. 1999; 121: 11964
- 14 Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
- 15 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Crystallogr. 2009; 42: 339
- 16 Sheldrick GM. Acta Crystallogr., Sect. A: Found. Adv. 2015; A71: 3
- 17 Sheldrick GM. Acta Crystallogr., Sect. C: Struct. Chem. 2015; C71: 3
- 18 CCDC 2356289–2356291 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
For useful points-of-entry to the relevant literature see: