Subscribe to RSS
DOI: 10.1055/s-0043-1773508
Recyclable Copper-Catalyzed Cascade Coupling/Condensation/ Deacylation Reaction of 2′-Halotrifluoroacetanilides with β-Keto Esters toward 2-(Trifluoromethyl)indoles
We thank the National Natural Science Foundation of China (No. 21664008) and Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education (No. KFSEMC-202206) for financial support.

Abstract
An efficient heterogeneous copper-catalyzed cascade coupling/condensation/deacylation reaction of 2′-halotrifluoroacetanilides with β-keto esters has been developed. The reaction proceeds smoothly in anhydrous dimethyl sulfoxide at 80–90 °C using Cs2CO3 as base and 10–20 mol% SBA-15-immobilized l-proline–CuI complex [SBA-15–l-Proline–CuI] as catalyst and provides a general and practical method for the assembly of a variety of polysubstituted 2-(trifluoromethyl)indoles in good to high yields. This heterogenized copper catalyst can be easily recovered via a simple centrifugation process and reused more than seven cycles with almost consistent catalytic activity.
Key words
copper - C–C coupling - 2-(trifluoromethyl)indoles - β-keto esters - heterogeneous catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773508.
- Supporting Information
Publication History
Received: 15 September 2024
Accepted after revision: 03 December 2024
Article published online:
10 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Usachev BI. J. Fluorine Chem. 2016; 185: 118
- 2a Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 2b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2c Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
- 2d Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
- 2e Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
- 3a Böhm H.-J, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M. ChemBioChem 2004; 5: 637
- 3b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 3c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 3d Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 3e Nilsson BM. J. Med. Chem. 2006; 49: 4023
- 4a Akanmu MA, Songkram C, Kagechika H, Honda K. Neurosci. Lett. 2004; 364: 199
- 4b Fukuda Y, Furuta H, Kusama Y, Ebisu H, Oomori Y, Terashima S. J. Med. Chem. 1999; 42: 1448
- 4c Fukuda Y, Furuta H, Shiga F, Oomori Y, Kusama Y, Ebisu H, Terashima S. Bioorg. Med. Chem. Lett. 1997; 7: 1683
- 5 Fürstner A, Hupperts A. J. Am. Chem. Soc. 1995; 117: 4468
- 6 Miyashita K, Kondoh K, Tsuchiya K, Miyabe H, Imanishi T. J. Chem. Soc., Perkin Trans. 1 1996; 1261
- 7 Konno T, Chae J, Ishihara T, Yamanaka H. J. Org. Chem. 2004; 69: 8258
- 8 Ge F, Wang Z, Wan W, Hao J. Synlett 2007; 447
- 9a Iqbal T, Choi S, Ko E, Cho EJ. Tetrahedron Lett. 2012; 53: 2005
- 9b Nagib DA, MacMillan DW. C. Nature 2011; 480: 225
- 9c Kino T, Nagase Y, Ohtsuka Y, Yamamoto K, Uraguchi D, Tokuhisa K, Yamakawa T. J. Fluorine Chem. 2010; 131: 98
- 9d Mu X, Chen S, Zhen X, Liu G. Chem. Eur. J. 2011; 17: 6039
- 9e Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 1298
- 9f Fennewald JC, Lipshutz BH. Green Chem. 2014; 16: 1097
- 9g He R.-Y, Zeng H.-T, Huang J.-M. Eur. J. Org. Chem. 2014; 4258
- 9h Mormino MG, Fier PS, Hartwig JF. Org. Lett. 2014; 16: 1744
- 10a Mejia E, Togni A. ACS Catal. 2012; 2: 521
- 10b Wiehn MS, Vinogradova EV, Togni A. J. Fluorine Chem. 2010; 131: 951
- 10c Shimizu R, Egami H, Nagi T, Chae J, Hamashima Y, Sodeoka M. Tetrahedron Lett. 2010; 51: 5947
- 10d Sodeoka M, Miyazaki A, Shimizu R, Egami H. Heterocycles 2012; 86: 979
- 10e Xu J, Luo D.-F, Xiao B, Liu Z.-J, Gong T.-J, Fu Y, Liu L. Chem. Commun. 2011; 47: 4300
- 10f Cheng Y, Yuan X, Ma J, Yu S. Chem. Eur. J. 2015; 21: 8355
- 11 Pedroni J, Cramer N. Org. Lett. 2016; 18: 1932
- 12 Dong X, Hu Y, Xiao T, Zhou L. RSC Adv. 2015; 5: 39625
- 13 Yamamoto Y, Ohkubo E, Shibuya M. Adv. Synth. Catal. 2017; 359: 1747
- 14 Ye Y, Cheung KP. S, He L, Tsui GC. Org. Lett. 2018; 20: 1676
- 15 Latham EJ, Stanforth SP. J. Chem. Soc., Perkin Trans. 1 1997; 2059
- 16 Chen Y, Wang Y, Sun Z, Ma D. Org. Lett. 2008; 10: 625
- 17a Girard C, Onen E, Aufort M, Beauviere S, Samson E, Herscovici J. Org. Lett. 2006; 8: 1689
- 17b Chassaing S, Sido AS. S, Alix A, Kumarraja M, Pale P, Sommer J. Chem. Eur. J. 2008; 14: 6713
- 17c Lipshutz BH, Taft BR. Angew. Chem. Int. Ed. 2006; 45: 8235
- 17d Wang D, Etienne L, Echeverria M, Moya S, Astruc D. Chem. Eur. J. 2014; 20: 4047
- 17e Yamada YM. A, Sarkar SM, Uozumi Y. J. Am. Chem. Soc. 2012; 134: 9285
- 17f Kantam ML, Reddy CV, Srinivas P, Bhargava S. In Topics in Organometallic Chemistry, Vol. 46. Taillefer M, Ma D. Springer; Heidelberg: 2013: 119-171
- 17g Guo Y, Zhu J, Wang Y, Li Y, Hu H, Zhang P, Xu J, Li W. ACS Catal. 2024; 14: 619
- 17h Ying B, Xu J, Zhu X, Shen C, Zhang P. ChemCatChem 2016; 8: 2604
- 17i Shen C, Xu J, Ying B, Zhang P. ChemCatChem 2016; 8: 3560
- 18a Benyahya S, Monnier F, Taillefer M, Wong Chi Man M, Bied C, Ouazzani F. Adv. Synth. Catal. 2008; 350: 2205
- 18b Benyahya S, Monnier F, Wong Chi Man M, Bied C, Ouazzani F, Taillefer M. Green Chem. 2009; 11: 1121
- 18c Phan NT. S, Nguyen TT, Nguyen VT, Nguyen KD. ChemCatChem 2013; 5: 2374
- 18d Shen C, Xu J, Yu W, Zhang P. Green Chem. 2014; 16: 3007
- 18e Zhao H, He W, Yao R, Cai M. Adv. Synth. Catal. 2014; 356: 3092
- 18f Magne V, Garnier T, Danel M, Pale P, Chassaing S. Org. Lett. 2015; 17: 4494
- 18g Zhao H, He W, Wei L, Cai M. Catal. Sci. Technol. 2016; 6: 1488
- 18h Pan S, Yan S, Osako T, Uozumi Y. ACS Sustainable Chem. Eng. 2017; 5: 10722
- 18i Schlimpen F, Placais C, Starck E, Bénéteau V, Pale P, Chassaing S. J. Org. Chem. 2021; 86: 16593
- 19a Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Science 1998; 279: 548
- 19b Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. J. Am. Chem. Soc. 1998; 120: 6024
- 20a Schuth F, Schmidt W. Adv. Eng. Mater. 2002; 4: 269
- 20b Wight AP, Davis ME. Chem. Rev. 2002; 102: 3589
- 20c Stein A. Adv. Mater. 2003; 15: 763
- 20d Rolison DR. Science 2003; 299: 1698
- 21 Zhang F, Yan Y, Yang H, Meng Y, Yu C, Tu B, Zhao D. J. Phys. Chem. B 2005; 109: 8723
- 22a Wu F, Feng Y, Jones CW. ACS Catal. 2014; 4: 1365
- 22b Rohani S, Ziarani GM, Badiei A, Ziarati A, Jafari M, Shayyesteh A. Appl. Organomet. Chem. 2018; 32: e4397
- 22c Nouri K, Hajjami M, Azadi G. Catal. Lett. 2018; 148: 671
- 22d Lai YT, Chen TC, Lan YK, Chen BS, You JH, Yang CM, Lai NC, Wu JH, Chen CS. ACS Catal. 2014; 4: 3824
- 22e Yang Y, Rioux RM. Chem. Commun. 2011; 47: 6557
- 22f Huo Y, Hu J, Lin S, Ju X, Wei Y, Huang Z, Hu Y, Tu Y. Appl. Organomet. Chem. 2019; 33: e4874
- 22g Zhao J, Yuan H, Qin X, Tian K, Liu Y, Wei C, Zhang Z, Zhou L, Fang S. Catal. Lett. 2020; 150: 2841
- 22h Yu H, Wu C, Wang S, Li T, Yin H. ACS Appl. Nano Mater. 2021; 4: 7213
- 23 Ye Q, Huang W, Wei L, Cai M. J. Org. Chem. 2023; 88: 2973
- 24 Lempers HE. B, Sheldon RA. J. Catal. 1998; 175: 62