Subscribe to RSS
DOI: 10.1055/s-0043-1773529
Synthesis of 5-(Trifluoromethyl)-2,3-dihydrofurans through N-Alkylation of Azoles Using Brominated Enones
The authors are grateful for financial support from the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS/CNPq) (403.134/2021-8), and for fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (G.S.P., P.A.M., H.G.B., M.A.P.M and N.Z) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (M.M.).

Abstract
We herein present a chemo- and regioselective methodology for the N-alkylation/arylation of azoles (imidazoles, pyrazoles, and triazoles) using 5-bromo-1,1,1-trifluoro-4-alkoxypent-3-en-2-ones (brominated enones) as precursors, in order to selectively obtain N-alkylated azoles containing disubstituted furans or dihydrofurans. The key reaction steps are 1,4-conjugated addition followed by nucleophilic substitution (each promoted by a different nitrogen atom of the azole), which furnish the corresponding 2,5-disubstituted dihydrofurans (24 examples, yields of 37–97%). The limitations of the reaction are explored and it is found that when 2-chlorobenzimidazole is used as a dinucleophile, 5-trifluoromethyl-3-substituted furans are obtained (three examples, yields of 57–67%). The selectivity of the reactions is determined through NMR analysis (including two-dimensional techniques for the 15N nucleus) and single-crystal X-ray analysis.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/10.1055/s-0043-1773529.
- Supporting Information
Publication History
Received: 18 January 2025
Accepted after revision: 18 February 2025
Article published online:
07 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Bhukta S, Chatterjee R, Dandela R. Synthesis 2023; 55: 846
- 2 Patel G, Dewangan DK, Bhakat N, Banerjee S. Curr. Res. Green Sustain. Chem. 2021; 4: 100175
- 3 Zheng X, Ma Z, Zhang D. Pharmaceuticals 2020; 13: 37
- 4 Shirota H, Mandai T, Fukazawa H, Kato T. J. Chem. Eng. Data 2011; 56: 2453
- 5 Feng S, Zhang B, Luo C, Liu Y, Zhu S, Gou R, Zhang S, Yin P, Pang S. Org. Lett. 2023; 25: 1290
- 6 Ouakki M, Galai M, Cherkaoui M. J. Mol. Liq. 2022; 345: 117815
- 7 Yan T, Zhang S, Feng L, Qiang Y, Lu L, Fu D, Wen Y, Chen J, Li W, Tan B. J. Taiwan Inst. Chem. Eng. 2020; 106: 118
- 8 Wang S, Zhao L, Xu Z, Wu C, Cheng S. Mater. Lett. 2002; 56: 1035
- 9 Barancelli DA, Mantovani AC, Jesse C, Nogueira CW, Zeni G. J. Nat. Prod. 2009; 72: 857
- 10 Qiu YF, Grossman RB, Yang X.-W. J. Nat. Prod. 2023; 86: 2391
- 11 Bosma WB, Bartelt RJ, Momany FA. J. Org. Chem. 2006; 71: 4748
- 12 Deepthi A, Babu BP, Balachandran AL. Org. Prep. Proced. Int. 2019; 51: 409
- 13 Toledo I, Grigolo TA, Bennett JM, Elkins JM, Pilli RA. J. Org. Chem. 2019; 84: 14187
- 14 Fang S, Yu H, Yang X, Li J, Shao L. Adv. Synth. Catal. 2019; 361: 3312
- 15 Basak S, Dutta S, Maiti D. Chem. Eur. J. 2021; 27: 10533
- 16 Shabalin DA, Dunsford JJ, Ngwerume S, Saunders AR, Gill DM, Camp JE. Synlett 2020; 31: 797
- 17 Tali JA, Kumar G, Sharma BK, Rasool Y, Sharma Y, Shankar R. Org. Biomol. Chem. 2023; 21: 7267
- 18 Ananthu S, Aneeja T, Anilkumar G. ChemistrySelect 2021; 6: 9794
- 19 Silva RC, Santos MS. J. Heterocycl. Chem. 2024; 61: 1721
- 20 Yin P, Zhang Q, Shreeve JM. Acc. Chem. Res. 2016; 49: 4
- 21 Zhang T, Maekawa H. Org. Lett. 2017; 19: 6602
- 22 Mittersteiner M, Andrade VP, Zachow LL, Frizzo CP, Bonacorso HG, Martins MA. P, Zanatta N. J. Org. Chem. 2019; 84: 8976
- 23 Wang Y, Noble A, Sandford C, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 1810
- 24 Wang J, Chen S, Wu W, Wen S, Weng Z. J. Org. Chem. 2019; 84: 15685
- 25 Chong Q, Xin X, Wang C, Wu F, Wang H, Shi J, Wan B. J. Org. Chem. 2014; 79: 2105
- 26 Chen S, Graceffa RF, Boezio AA. Org. Lett. 2016; 18: 16
- 27 Desai SP, Taylor MS. Org. Lett. 2021; 23: 7049
- 28 Li P, Zbieg JR, Terrett JA. Org. Lett. 2021; 23: 9563
- 29 Zeinyeh W, Pilmé J, Radix S, Walchshofer N. Tetrahedron Lett. 2009; 50: 1828
- 30 Altman RA, Koval ED, Buchwald SL. J. Org. Chem. 2007; 72: 6190
- 31 Mittersteiner M, Bonacorso HG, Martins MA. P, Zanatta N. Synthesis 2020; 52: 2008
- 32 Mittersteiner M, Pereira GS, Silva Y, Wessjohann LA, Bonacorso HG, Martins MA. P, Zanatta N. J. Org. Chem. 2022; 87: 4590
- 33 Mittersteiner M, Pereira GS, Wessjohann LA, Bonacorso HG, Martins MA. P, Zanatta N. ACS Omega 2022; 7: 18930
- 34 Pearson RG. J. Am. Chem. Soc. 1963; 85: 3533
- 35 Lee JC, Yuk JY, Cho SH. Synth. Commun. 1995; 25: 1367
- 36 Hou J, Peng Y, Liu B, Zhang Q, Wang J.-H, Yu W, Chang J. J. Med. Chem. 2023; 66: 11282
- 37 Mittersteiner M, Andrade VP, Bonacorso HG, Martins MA. P, Zanatta N. Eur. J. Org. Chem. 2020; 6405
- 38 Mittersteiner M, Aquino EC, Budragchaa T, Wessjohann LA, Bonacorso HG, Martins MA. P, Zanatta N. Synthesis 2022; 54: 439
- 39 Mittersteiner M, Bonacorso HG, Martins MA. P, Zanatta N. Eur. J. Org. Chem. 2021; 3886
- 40 Bujak P, Krompiec S, Malarz J, Krompiec M, Filapek M, Danikiewicz W, Kania M, Gebarowska K, Grudzka I. Tetrahedron 2010; 66: 5972
- 41 Zanatta N, Schneider JM. F. M, Schneider PH, Wouters AD, Bonacorso HG, Martins MA. P, Wessjohann LA. J. Org. Chem. 2006; 71: 6996
- 42 Moraes PA, Lobo MM, Marangoni MA, Meyer AR, Frizzo CP, Bonacorso HG, Martins MA. P, Zanatta N. Org. Biomol. Chem. 2019; 17: 2384
- 43 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Crystallogr. 2009; 42: 339
- 44 Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JA. K, Puschmann H. Acta Crystallogr. A 2015; 71: 59