Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2024; 56(16): 2558-2564
DOI: 10.1055/s-0043-1774866
DOI: 10.1055/s-0043-1774866
paper
Radical Allylation of Aldehydes with Allenes by Photoredox Cobalt and Chromium Dual Catalysis
The project was supported by the National Natural Science Foundation of China (22171036), the Natural Science Foundation of Henan Province (232300421126), and the Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University (2020YB03).
Abstract
A dual cobalt and chromium photoredox-catalyzed allylation of aldehydes with allenes through a photo metal-hydride atom transfer (MHAT) process has been developed to yield homoallylic alcohols with exceptional diastereoselective control. This sustainable and efficient method holds significant promise for applications in the synthesis of valuable organic compounds.
Key words
photocatalysis - metal-hydride atom transfer (MHAT) - allenes - allylation - cobalt - homoallylic alcoholsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1774866.
- Supporting Information
Publication History
Received: 31 March 2024
Accepted after revision: 01 May 2024
Article published online:
23 May 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Pozo J, Zhang S, Romiti F, Xu S, Conger RP, Hoveyda AH. J. Am. Chem. Soc. 2020; 142: 18200
- 1b Goh SS, Chaubet G, Gockel B, Cordonnier M.-CA, Baars H, Phillips AW, Anderson EA. Angew. Chem. Int. Ed. 2015; 54: 12618
- 1c Letort A, Aouzal R, Ma C, Long D.-L, Prunet J. Org. Lett. 2014; 16: 3300
- 3a Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
- 3b Kim UB, Jung DJ, Jeon HJ, Rathwell K, Lee S. Chem. Rev. 2020; 120: 13382
- 3c Xiang M, Pfaffinger DE, Krische MJ. Chem. Eur. J. 2021; 27: 13107
- 3d Wang P.-Z, Wu X, Cheng Y, Jiang M, Xiao W.-J, Chen J.-R. Angew. Chem. Int. Ed. 2021; 60: 22956
- 4 Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Guo Y, Qi X, Zhang G. Angew. Chem. Int. Ed. 2022; 61: e202208232
- 5 Blieck R, Taillefer M, Monnier F. Chem. Rev. 2020; 120: 13545
- 6 Nong Z.-S, Chen X.-R, Wang P.-S, Hong X, Gong L.-Z. Angew. Chem. Int. Ed. 2023; 62: e202312547
- 7a Lee GS, Hong SH. Acc. Chem. Res. 2023; 56: 2170
- 7b Ji CL, Zhai X, Fang QY, Zhu C, Hana J, Xie J. Chem. Soc. Rev. 2023; 52: 6120
- 7c Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 7d Lu FD, Chen J, Jiang X, Chen JR, Lu LQ, Xiao WJ. Chem. Soc. Rev. 2021; 50: 12808
- 7e Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 7f Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
- 8a Zheng J, Breit B. Angew. Chem. Int. Ed. 2019; 58: 3392
- 8b Till NA, Smith RT, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 5701
- 8c Li K, Long X, Zhu S. ACS Catal. 2023; 13: 2422
- 9a Zheng J, Tang N, Xie H, Breit B. Angew. Chem. Int. Ed. 2022; 61: e202200105
- 9b Li F, Lin S, Chen Y, Shi C, Yan H, Li C, Wu C, Lin L, Duan C, Shi L. Angew. Chem. Int. Ed. 2021; 60: 1561
- 9c Li F, Lin S, Li X, Shi L. Synthesis 2021; 53: 1889
- 9d Lin S, Chen Y, Yan H, Liu Y, Sun Y, Hao E, Shi C, Zhang D, Zhu N, Shi L. Org. Lett. 2021; 23: 8077
- 9e Yan H, Zhang D, Liu Y, Wang X, Wu Z, Jin Y, Ding X, Shan JR, Hao E, Shi L. Org. Chem. Front. 2024; 11: 684
- 9f Mayer PJ, London G. Org. Lett. 2023; 25: 42
- 9g Liu Y, Yan H, Chen Y, Hao E, Shi L. Chem. Commun. 2023; 59: 10388
- 9h Hao E, Lu B, Liu Y, Yang T, Yan H, Ding X, Jin Y, Shi L. Org. Lett. 2023; 25: 5094
- 9i Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Angew. Chem. Int. Ed. 2022; 61: e202204516
- 10a Zheng J, Nikbakht A, Breit B. ACS Catal. 2021; 11: 3343
- 10b Yan H, Liao Q, Chen Y, Gurzadyan GG, Lu B, Wu C, Shi L. Angew. Chem. Int. Ed. 2023; 62: e202302483
- 11 Schwarz JL, Huang HM, Paulisch TO, Glorius F. ACS Catal. 2020; 10: 1621
- 12 Li YL, Li WD, Gu ZY, Chen J, Xia JB. ACS Catal. 2020; 10: 1528
- 13 Xie H, Breit B. ACS Catal. 2022; 12: 3249
- 14a Sweany RL, Halpern J. J. Am. Chem. Soc. 1977; 99: 8335
- 14b Mukaiyama T, Isayama S, Inoki S, Kato K, Yamada T, Takai T. Chem. Lett. 1989; 18: 449
- 15a Waser J, Carreira EM. Angew. Chem. Int. Ed. 2004; 43: 4099
- 15b Waser J, Nambu H, Carreira EM. J. Am. Chem. Soc. 2005; 127: 8294
- 16 Jana S, Mayerhofer VJ, Teskey CJ. Angew. Chem. Int. Ed. 2023; 62: e202304882
- 17 Nakagawa M, Matsuki Y, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2022; 144: 7953
- 18 Fang X, Zhang N, Chen S.-C, Luo T. J. Am. Chem. Soc. 2022; 144: 2292
- 19 Mayerhofer VJ, Lippolis M, Teskey CJ. Angew. Chem. Int. Ed. 2024; 63: e202314870
- 20 Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
- 21 Wang PZ, Chen JR, Xiao WJ. Org. Biomol. Chem. 2019; 17: 6936