Subscribe to RSS
DOI: 10.1055/s-0043-1775106
The Catalytic Synthesis of Aza-Sulfur Functional Groups

Abstract
Sulfur-containing compounds are found in myriad applications. Sulfones and sulfonamides are the most common functional groups used in medicinal and agrochemical endeavours. Isosteres of these functional groups, for example, sulfoximines and sulfonimidamides, are emerging functionalities, and they are increasingly common in the relevant patent literature. However, in general, the associated synthetic routes still have limitations, including the use of harsh reaction conditions and highly reactive reagents. A variety of catalytic reactions that employ a diverse range of substrate classes have been developed to address these issues. This short review highlights recent catalytic syntheses of aza-sulfur compounds, which we hope will open new directions in discovery chemistry.
1 Introduction
2 Reactions of N-Sulfinylamines
3 Reactions with Sulfenamides
4 Reactions with Sulfinates
5 Reactions with Sulfinamides
6 Reactions with Other Aza-Sulfur Compounds
7 Conclusion
Publication History
Received: 17 July 2024
Accepted after revision: 21 August 2024
Article published online:
26 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
- 2 Lucking U. Chem. Eur. J. 2022; 28: e202201993
- 3 Lucking U. Angew. Chem. Int. Ed. 2013; 52: 9399
- 4 Chinthakindi PK, Naicker T, Thota N, Govender T, Kruger HG, Arvidsson PI. Angew. Chem. Int. Ed. 2017; 56: 4100
- 5 Passia MT, Schobel JH, Bolm C. Chem. Soc. Rev. 2022; 51: 4890
- 6 Zhang Z.-X, Willis MC. Chem 2022; 8: 1137
- 7 Davies TQ, Hall A, Willis MC. Angew. Chem. Int. Ed. 2017; 56: 14937
- 8 Davies TQ, Tilby MJ, Ren J, Parker NA, Skolc D, Hall A, Duarte F, Willis MC. J. Am. Chem. Soc. 2020; 142: 15445
- 9 Davies TQ, Tilby MJ, Skolc D, Hall A, Willis MC. Org. Lett. 2020; 22: 9495
- 10 Ding M, Zhang Z.-X, Davies TQ, Willis MC. Org. Lett. 2022; 24: 1711
- 11 Saito F. Angew. Chem. Int. Ed. 2022; 61: e202213872
- 12 Austrup D, Saito F. Angew. Chem. Int. Ed. 2023; 62: e202315123
- 13 Andrews JA, Willis MC. Synthesis 2022; 54: 1695
- 14 Liu G, Fan C, Wu J. Org. Biomol. Chem. 2015; 13: 1592
- 15 Lo PK. T, Willis MC. J. Am. Chem. Soc. 2021; 143: 15576
- 16 Shi Y, Yuan Y, Li J, Yang J, Zhang J. J. Am. Chem. Soc. 2024; 146: 17580
- 17 Xi L, Fang X, Wang M, Shi Z. J. Am. Chem. Soc. 2024; 146: 17587
- 18 Wei M.-K, Moseley DF, Bär RM, Sempere Y, Willis MC. J. Am. Chem. Soc. 2024; 146: 19690
- 19 Wang B.-C, Hu F, Bai J, Xiong F.-Y, Chen P, Li J, Tan Y, Guo Y.-L, Xiao W.-J, Lu L.-Q. Angew. Chem. Int. Ed. 2024; 63: e202319728
- 20 Liang Q, Bu G, Jiao H, Gao B. Eur. J. Org. Chem. 2024; 27: e202301153
- 21 Bremerich M, Conrads CM, Langletz T, Bolm C. Angew. Chem. Int. Ed. 2019; 58: 19014
- 22 Liu Y, Pan Q, Hu X, Guo Y, Chen Q.-Y, Liu C. Org. Lett. 2021; 23: 3975
- 23 Li G, Chen R, Wu L, Fu Q, Zhang X, Tang Z. Angew. Chem. Int. Ed. 2013; 52: 8432
- 24 Li L, Zhang S.-q, Chen Y, Cui X, Zhao G, Tang Z, Li G.-x. ACS Catal. 2022; 12: 15334
- 25 Andrews JA, Kalepu J, Palmer CF, Poole DL, Christensen KE, Willis MC. J. Am. Chem. Soc. 2023; 145: 21623
- 26 Dang HT, Porey A, Nand S, Trevino R, Manning-Lorino P, Hughes WB, Fremin SO, Thompson WT, Dhakal SK, Arman HD, Larionov OV. Chem. Sci. 2023; 14: 13384
- 27 Andrews JA, Woodger RG, Palmer CF, Poole DL, Willis MC. Angew. Chem. Int. Ed. 2024; 63: e202407970
- 28 Yan M, Wang S.-f, Zhang Y.-p, Zhao J.-z, Tang Z, Li G.-x. Org. Biomol. Chem. 2024; 22: 348
- 29 Das S, Mondal PP, Dhibar A, Ruth A, Sahoo B. Org. Lett. 2024; 26: 3679
- 30 Xia G.-D, Li R, Zhang L, Wei Y, Hu X.-Q. Org. Lett. 2024; 26: 3703
- 31 Davies TQ, Willis MC. Chem. Eur. J. 2021; 27: 8918
- 32 Weinreb SM. Acc. Chem. Res. 1988; 21: 313
- 33 Bayeh L, Le PQ, Tambar UK. Nature 2017; 547: 196
- 34 Oliver GA, Loch MN, Augustin AU, Steinbach P, Sharique M, Tambar UK, Jones PG, Bannwarth C, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 25825
- 35 Craine L, Raban M. Chem. Rev. 1989; 89: 689
- 36 Liang Q, Wells LA, Han K, Chen S, Kozlowski MC, Jia T. J. Am. Chem. Soc. 2023; 145: 6310
- 37 Greenwood NS, Ellman JA. Org. Lett. 2023; 25: 2830
- 38 Greenwood NS, Ellman JA. Org. Lett. 2023; 25: 4759
- 39 Yuan Y, Han Y, Zhang Z.-k, Sun S, Wu K, Yang J, Zhang J. Angew. Chem. Int. Ed. 2024; 63: e202409541
- 40 Greenwood NS, Cerny NP, Deziel AP, Ellman JA. Angew. Chem. Int. Ed. 2024; 63: e202315701
- 41 Zhou Q, Li J, Wang T, Yang X. Org. Lett. 2023; 25: 4335
- 42 Wu X, Li Y, Chen M, He F.-S, Wu J. J. Org. Chem. 2023; 88: 9352
- 43 Huang G, Lu X, Liang F. Org. Lett. 2023; 25: 3179
- 44 Xie P, Zheng Y, Luo Y, Luo J, Wu L, Cai Z, He L. Org. Lett. 2023; 25: 6133
- 45 Wu X, Chen M, He F.-S, Wu J. Org. Lett. 2023; 25: 5157
- 46 Huang G, Lu X, Yang K, Xu X. Org. Lett. 2023; 25: 3173
- 47 Chen Y, Fang D.-m, Huang H.-s, Nie X.-k, Zhang S.-q, Cui X, Tang Z, Li G.-x. Org. Lett. 2023; 25: 2134
- 48 Champlin AT, Ellman JA. J. Org. Chem. 2023; 88: 7607
- 49 Greenwood NS, Champlin AT, Ellman JA. J. Am. Chem. Soc. 2022; 144: 17808
- 50 Wu X, Chen M, He F.-S, Wu J. Green Chem. 2023; 25: 9092
- 51 Han Y, Yuan Y, Qi S, Zhang Z.-K, Kong X, Yang J, Zhang J. Org. Lett. 2024; 26: 3906
- 52 Zhang M, Liu L, Tan Y, Jing Y, Liu Y, Wang Z, Wang Q. Angew. Chem. Int. Ed. 2024; 63: e202318344
- 53 Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600
- 54 Zhou P, Chen B.-C, Davis FA. Tetrahedron 2004; 60: 8003
- 55 Bolm C, Bienewald F. Angew. Chem., Int. Ed. Engl. 1996; 34: 2640
- 56 Ma L.-j, Chen S.-s, Li G.-x, Zhu J, Wang Q.-w, Tang Z. ACS Catal. 2019; 9: 1525
- 57 Yang G.-f, Yuan Y, Tian Y, Zhang S.-q, Cui X, Xia B, Li G.-x, Tang Z. J. Am. Chem. Soc. 2023; 145: 5439
- 58 Yang G.-f, Huang H.-s, Nie X.-k, Zhang S.-q, Cui X, Tang Z, Li G.-x. J. Org. Chem. 2023; 88: 4581
- 59 Huang G, Ye J, Bashir MA, Chen Y, Chen W, Lu X. J. Org. Chem. 2023; 88: 11728
- 60 Huang G, Ye J, Tan M, Chen Y, Lu X. J. Org. Chem. 2023; 88: 16116
- 61 Reddy RJ, Kumari AH. RSC Adv. 2021; 11: 9130
- 62 Cook XA. F, de Gombert A, McKnight J, Pantaine LR. E, Willis MC. Angew. Chem. Int. Ed. 2021; 60: 11068
- 63 Liang S, Hofman K, Friedrich M, Manolikakes G. Eur. J. Org. Chem. 2020; 4664
- 64 Evans JW, Fierman MB, Miller SJ, Ellman JA. J. Am. Chem. Soc. 2004; 126: 8134
- 65 Shibata N, Matsunaga M, Nakagawa M, Fukuzumi T, Nakamura S, Toru T. J. Am. Chem. Soc. 2005; 127: 1374
- 66 Zhang X, Ang EC. X, Yang Z, Kee CW, Tan C.-H. Nature 2022; 604: 298
- 67 Liao M, Liu Y, Long H, Xiong Q, Lv X, Luo Z, Wu X, Chi YR. Chem 2024; 10: 1541
- 68 Wei T, Wang H.-L, Tian Y, Xie M.-S, Guo H.-M. Nat. Chem. 2024; 16: 1301
- 69 Xu B, Ji D, Wu L, Zhou L, Liu Y, Zhang Z.-M, Zhang J. Chem 2022; 8: 836
- 70 Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
- 71 Aota Y, Kano T, Maruoka K. Angew. Chem. Int. Ed. 2019; 58: 17661
- 72 Aota Y, Kano T, Maruoka K. J. Am. Chem. Soc. 2019; 141: 19263
- 73 Zou X, Wang H, Gao B. Org. Lett. 2023; 25: 7656
- 74 Yu H, Li Z, Bolm C. Angew. Chem. Int. Ed. 2018; 57: 15602
- 75 Wu P, Demaerel J, Kong D, Ma D, Bolm C. Org. Lett. 2022; 24: 6988
- 76 Zhang ZX, Davies TQ, Willis MC. J. Am. Chem. Soc. 2019; 141: 13022
- 77 Passia MT, Bormann N, Ward JS, Rissanen K, Bolm C. Angew. Chem. Int. Ed. 2023; 62: e202305703
- 78 Peng Z, Sun S, Zheng M.-M, Li Y, Li X, Li S, Xue X.-S, Dong J, Gao B. Nat. Chem. 2024; 16: 353