Subscribe to RSS
DOI: 10.1055/s-0043-1775371
α-Amino Acid Synthesis by 1,3-Nitrogen Migration: An Update
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 883212).
Abstract
An improved practical and efficient procedure for the synthesis of non-racemic unnatural α-amino acids through a stereocontrolled rearrangement is reported. Carboxylic acids are converted into azanyl esters RCO2NHBoc followed by an iron-catalyzed 1,3-nitrogen migration to provide non-racemic α-amino acids in an asymmetric (α-monosubstituted α-amino acids) or enantioconvergent fashion (α,α-disubstituted α-amino acids). Under optimized conditions using a fluorinated chiral iron catalyst and 2,2,6,6-tetramethylpiperidine as the base in a solvent mixture of 1,2-dichlorobenzene and CHCl3, enantioselectivities of up to 98% ee were obtained. Such high ee values are important for practical purposes, allowing the direct use of many of the obtained N-Boc-protected α-amino acids for subsequent applications.
Supporting Information
- Synthesis of catalysts, NMR spectra, and HPLC traces. Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775371.
- Supporting Information
Publication History
Received: 28 March 2024
Accepted after revision: 03 May 2024
Article published online:
17 June 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Dougherty DA. Curr. Opin. Chem. Biol. 2000; 4: 645
- 1b Hodgson DR. W, Sanderson JM. Chem. Soc. Rev. 2004; 33: 422
- 1c Bhonsle JB, Clark T, Bartolotti L, Hicks RP. Curr. Top. Med. Chem. 2013; 13: 3205
- 1d Stevenazzi A, Marchini M, Sandrone G, Vergani B, Lattanzio M. Bioorg. Med. Chem. Lett. 2014; 24: 5349
- 1e Blaskovich MA. T. J. Med. Chem. 2016; 59: 10807
- 1f Agostini F, Völler J.-S, Koksch B, Acevedo-Rocha CG, Kubyshkin V, Budisa N. Angew. Chem. Int. Ed. 2017; 56: 9680
- 1g Henninot A, Collins JC, Nuss JM. J. Med. Chem. 2018; 61: 1382
- 1h Narancic T, Almahboub SA, O’Connor KE. World J. Microbiol. Biotechnol. 2019; 35: 67
- 1i Cheng Z, Kuru E, Sachdeva A, Vendrell M. Nat. Rev. Chem. 2020; 4, 275
- 1j Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Chem. Eur. J. 2020; 26: 11349
- 1k Yokoo H, Hirano M, Misawa T, Demizu Y. ChemMedChem 2021; 16: 1226
- 2a Williams RM, Hendrix JA. Chem. Rev. 1992; 92: 889
- 2b Ma J.-A. Angew. Chem. Int. Ed. 2003; 42: 4290
- 2c Maruoka K. Proc. Jpn. Acad., Ser. B 2003; 79: 181
- 2d Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinski T. Angew. Chem. Int. Ed. 2004; 43: 788
- 2e Nájera C, Sansano JM. Chem. Rev. 2007; 107: 4584
- 2f Kim Y, Park J, Kim M.-J. ChemCatChem 2011; 3: 271
- 2g Smith AM. R, Hii KK. Chem. Rev. 2011; 111: 1637
- 2h So SM, Kim H, Mui L, Chin J. Eur. J. Org. Chem. 2012; 229
- 2i D’Arrigo P, Cerioli L, Servi S, Viani F, Tessaro D. Catal. Sci. Technol. 2012; 2: 1606
- 2j Bera K, Namboothiri IN. N. Asian J. Org. Chem. 2014; 3: 1234
- 2k Metz AE, Kozlowski MC. J. Org. Chem. 2015; 80: 1
- 2l He G, Wang B, Nack WA, Chen G. Acc. Chem. Res. 2016; 49: 635
- 2m Xue Y.-P, Cao C.-H, Zheng Y.-G. Chem. Soc. Rev. 2018; 47: 1516
- 2n Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B. Chem. Rev. 2019; 119: 10718
- 2o Larionov VA, Stoletova NV, Maleev VI. Adv. Synth. Catal. 2020; 362: 4325
- 2p Ponra S, Boudet B, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2021; 53: 193
- 2q Lin K, Shi A, Shi C, Lin J, Lin H. Front. Chem. 2021; 9: 687817
- 3a Kang Q.-K, Selvakumar S, Maruoka K. Org. Lett. 2019; 21: 2294
- 3b Bendelsmith AJ, Kim SC, Wasa M, Roche SP, Jacobsen EN. J. Am. Chem. Soc. 2019; 141: 11414
- 3c Han J, Romoff TT, Moriwaki H, Konno H, Soloshonok VA. ACS Omega 2019; 4: 18942
- 3d Zou Y, Han J, Saghyan AS, Mkrtchyan AF, Konno H, Moriwaki H, Izawa K, Soloshonok VA. Molecules 2020; 25: 2739
- 3e Yang Z.-P, Freas DJ, Fu GC. J. Am. Chem. Soc. 2021; 143: 8614
- 3f Shatskiy A, Axelsson A, Stepanova EV, Liu J.-Q, Temerdashev AZ, Kore BP, Blomkvist B, Gardner JM, Dinér P, Kärkäs MD. Chem. Sci. 2021; 12: 5430
- 4 Ye C.-X, Shen X, Chen S, Meggers E. Nat. Chem. 2022; 14: 566
- 5 Zhou B, Ye C.-X, Meggers E. Eur. J. Org. Chem. 2023; e202300296
- 6 See also: Ye C.-X, Dansby DR, Chen S, Meggers E. Nat. Synth. 2023; 2: 645
- 7 For a recent review on metal-catalyzed enantioconvergent transformations, see: Yus M, Nájera C, Foubelo F, Sansano JM. Chem. Rev. 2023; 123: 11817
- 8 Arosio D, Caligiuri A, D’Arrigo P, Pedrocchi-Fantoni G, Rossi C, Saraceno C, Servi S, Tessaro D. Adv. Synth. Catal. 2007; 349: 1345
- 9 Ferraboschi P, Mieri MD, Galimberti F. Tetrahedron: Asymmetry 2010; 21: 2136
- 10 Evans DA, Dinsmore CJ, Evrard DA, DeVries KM. J. Am. Chem. Soc. 1993; 115: 6426
Reviews on applications of unnatural and non-proteinogenic α-amino acids:
Reviews on the synthesis of α-amino acids:
For recent examples on the asymmetric synthesis of α-amino acids, see: