Synthesis
DOI: 10.1055/s-0043-1775374
short review
Special Issue PSRC-10 (10th Pacific Symposium on Radical Chemistry)

1,2-Bis(phenylsulfonyl)ethylene (BPSE): A Potent Radical C2 Synthon Available in the Radical and Electron-Transfer-Based Organic Synthesis

a   Research Division of Organic Materials, Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50, Morinomiya, Osaka 536-8553, Japan
b   Organization for Research Promotion, Osaka Metropolitan University (OMU), 599-8531 Sakai, Osaka, Japan
,
Ilhyong Ryu
b   Organization for Research Promotion, Osaka Metropolitan University (OMU), 599-8531 Sakai, Osaka, Japan
c   Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010 Taiwan, Taiwan
,
Frédéric Robert
d   University Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France
,
d   University Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France
› Author Affiliations
S.S. and I.R. thank funding from Japan Society for the Promotion of Science KAKENHI (JP21K14668 and 19H02722). I.R. thanks funding from the National Science and Technology Council (NSTC 112-2113-MA49-013) and the Centre for Emergent Functional Matter Science at National Yang Ming Chiao Tung University (NYCU) for additional support (112R10194C). Y.L. and F.R. gratefully acknowledge the University of Bordeaux, the CNRS and the Agence Nationale de la Recherche (ANR-11-BS07-010-01) for financial support.


Abstract

In this Short Review, we discuss radical reactions using 1,2-bis(phenylsulfonyl)ethylene (BPSE), which has drawn significant attention as a versatile building block for (phenylsulfonyl)ethenylation. Regardless of its E or Z form, BPSE exhibits reliable reactivity towards the attack of alkyl and aryl radicals in order to function as a reliable radical C2 synthon.

1 Introduction

2 Use in Radical Chain Reactions

3 Use in Reactions Utilizing an Electron-Transfer Process

4 Use in Radical-Based C–H Alkenylation

5 Conclusion



Publication History

Received: 15 May 2024

Accepted after revision: 05 June 2024

Article published online:
01 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Giese B, Dupuis J. Angew. Chem. Int. Ed. 1983; 22: 622
    • 1b Giese B. Angew. Chem. Int. Ed. Engl. 1989; 28: 969
  • 2 Godineau E, Landais Y. Chem. Eur. J. 2009; 15: 3044
  • 3 Ryu I, Sonoda N, Curran DP. Chem. Rev. 1996; 96: 177
  • 4 Fusano A, Ryu I. In Science of Synthesis: Multicomponent Reactions 2 . Muller TJ. J. Georg Thieme Verlag; Stuttgart: 2014: 409
  • 5 Quiclet-Sire B, Zard SZ. J. Am. Chem. Soc. 1996; 118: 1209
  • 6 Kim S, Kim S. Bull. Chem. Soc. Jpn. 2007; 80: 809
  • 7 Curran DP, Xu J, Lazzarini E. J. Chem. Soc., Perkin Trans. 1 1995; 3049
  • 9 Russell GA, Ngoviwatchai P, Tashtoush HI, Pla-Dalmau A, Khanna RK. J. Am. Chem. Soc. 1988; 110: 3530
  • 10 Chu X.-Q, Ge D, Cui Y.-Y, Shen Z.-L, Li C.-J. Chem. Rev. 2021; 121: 12548
    • 11a Truce WE, McManimie RJ. J. Am. Chem. Soc. 1954; 76: 5745
    • 11b Reddy DB, Babu NC, Padmavathi V, Sumathi RP. Synthesis 1999; 491
    • 11c De Lucchi O, Pasquato L, Rollin P, Tatibouët A, Romanov-Michailidis F. 1,2-Bis(phenylsulfonyl)ethylene . In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]. Wiley & Sons; 2016
  • 12 Personal communication from Prof. Manabu Abe.
  • 13 Howsam RW, Stirling CJ. M. J. Chem. Soc., Perkin Trans. 2 1972; 847
  • 14 Kiemele ER, Wathier M, Bichler P, Love JA. Org. Lett. 2016; 18: 492
  • 15 Lu T, Laughton CA, Wang S, Bradshaw TD. Mol. Pharmacol. 2015; 87: 18
    • 16a Doherty W, Adler N, Butler TJ, Knox AJ. S, Evans P. Bioorg. Med. Chem. 2020; 28: 115774
    • 16b Ahmadi R, Emami S. Eur. J. Med. Chem. 2022; 234: 114255
  • 17 Fang Y, Luo Z, Xu X. RSC Adv. 2016; 6: 59661
    • 18a Kim S, Lim CJ. Angew. Chem. Int. Ed. 2002; 41: 3265
    • 18b Lee S, Lim CJ, Kim S. Bull. Korean Chem. Soc. 2004; 25: 1611
  • 19 Lüthy M, Darmency V, Renaud P. Eur. J. Org. Chem. 2011; 547
    • 20a Liautard V, Robert F, Landais Y. Org. Lett. 2011; 13: 2658
    • 20b Beniazza R, Liautard V, Poittevin C, Ovadia B, Mohammed S, Robert F, Landais Y. Chem. Eur. J. 2017; 23: 2439
  • 21 Hara R, Khiar C, Dange NS, Bouillac P, Robert F, Landais Y. Eur. J. Org. Chem. 2018; 4058
  • 22 Poittevin C, Liautard V, Beniazza R, Robert F, Landais Y. Org. Lett. 2013; 15: 2814
  • 23 Comins DL, Brooks CA, Al-awar RS, Goehring RR. Org. Lett. 1999; 1: 229
  • 24 Beniazza R, Poittevin C, Lusseau J, Massip S, Robert F, Landais Y. Adv. Synth. Catal. 2017; 359: 3217
  • 25 Chaambi A, Kurtay G, Abderrahim R, Robert F, Landais Y. Helv. Chim. Acta 2019; 102: e1900140
  • 26 Sumino S, Uno M, Huang H.-J, Wu Y.-K, Ryu I. Org. Lett. 2018; 20: 1078
  • 27 Sumino S, Fusano A, Fukuyama T, Ryu I. Acc. Chem. Res. 2014; 47: 1563
    • 28a Sumino S, Ui T, Ryu I. Org. Chem. Front. 2015; 2: 1085
    • 28b Sumino S, Ui T, Hamada Y, Fukuyama T, Ryu I. Org. Lett. 2015; 17: 4952
    • 28c Sumino S, Ryu I. Org. Lett. 2016; 18: 52
    • 28d Sumino S, Ryu I. Asian J. Org. Chem. 2017; 6: 410
    • 28e Huang H.-J, Wang Y.-T, Wu Y.-K, Ryu I. Org. Chem. Front. 2020; 7: 1266
  • 29 Zhou W, Wu S, Melchiorre P. J. Am. Chem. Soc. 2022; 144: 8914
  • 30 Persson B. Acta Chem. Scand., Ser. B 1977; 31: 88
  • 31 Corcé V, Chamoreau L, Derat E, Goddard J, Ollivier C, Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
    • 32a Cartier A, Levernier E, Corcé V, Fukuyama T, Dhimane A, Ollivier C, Ryu I, Fensterbank L. Angew. Chem. Int. Ed. 2019; 58: 1789
    • 32b Cartier A, Levernier E, Dhimane A, Fukuyama T, Ollivier C, Ryu I, Fensterbank L. Adv. Synth. Catal. 2020; 362: 2254
  • 33 Kammer LM, Lipp B, Opatz T. J. Org. Chem. 2019; 84: 2379
  • 34 Lü S, Wang Z, Gao X, Chen K, Zhu S. Angew. Chem. Int. Ed. 2023; 62: e202300268
  • 35 Burlingham S.-J, Guijarro D, Bosque I, Chinchilla R, Gonzalez-Gomez JC. Org. Biomol. Chem. 2022; 20: 7923
    • 36a Mangion D, Arnold DR. Acc. Chem. Res. 2002; 35: 297
    • 36b Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
    • 36c Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
    • 36d Shennan BD. A, Berheci D, Crompton JL, Davidson TA, Field JL, Williams BA, Dixon DJ. Chem. Soc. Rev. 2022; 51: 5878
    • 36e Luo M.-J, Xiao Q, Li J.-H. Chem. Soc. Rev. 2022; 51: 7206
    • 36f Tanaka Y, Kubosaki S, Osaka K, Yamawaki M, Morita T, Yoshimi Y. J. Org. Chem. 2018; 83: 13625
    • 36g Xiong P, Long H, Song J, Wang Y, Li J.-F, Xu H.-C. J. Am. Chem. Soc. 2018; 140: 16387
    • 36h Dong X.-Y, Cheng J.-T, Zhang Y.-F, Li Z.-L, Zhan T.-Y, Chen J.-J, Wang F.-L, Yang N.-Y, Ye L, Gu Q.-S, Liu X.-Y. J. Am. Chem. Soc. 2020; 142: 9501
    • 36i Majhi J, Dhungana RK, Rentería-Gómez A, Sharique M, Li L, Dong W, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2022; 144: 15871
    • 37a Arnoldi C, Citterio A, Minisci F. J. Chem. Soc., Perkin Trans. 2 1983; 531
    • 37b Minisci F, Citterio A, Giordano C. Acc. Chem. Res. 1983; 16: 27
  • 38 Tsai C, Jhang Y, Wu Y, Ryu I. Angew. Chem. Int. Ed. 2023; 62: e202311807
  • 39 Perkowski AJ, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 10334
  • 40 Tsai C.-Y, Chen C.-Y, Wu Y.-K, Ryu I. Helv. Chim. Acta 2024; 107: e202400017
  • 41 Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
  • 42 Patz M, Mayr H, Maruta J, Fukuzumi S. Angew. Chem. Int. Ed. 1995; 34: 1225
    • 43a Cao H, Tang X, Tang H, Yuan Y, Wu J. Chem. Catal. 2021; 1: 523
    • 43b Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
    • 43c Ohmatsu K, Ooi T. Nat. Synth. 2023; 2: 209
    • 43d Zhang J, Rueping M. Chem. Soc. Rev. 2023; 52: 4099
  • 44 Norrish RG. W, Bamford CH. Nature 1937; 140: 195
    • 45a Kamijo S, Hoshikawa T, Inoue M. Tetrahedron Lett. 2011; 52: 2885
    • 45b Kamijo S, Hoshikawa T, Inoue M. Org. Lett. 2011; 13: 5928
    • 45c Hoshikawa T, Kamijo S, Inoue M. Org. Biomol. Chem. 2013; 11: 164
    • 45d Hoshikawa T, Yoshioka S, Kamijo S, Inoue M. Synthesis 2013; 45: 874
    • 45e Hoshikawa T, Inoue M. Chem. Sci. 2013; 4: 3118
  • 46 Amaoka Y, Nagatomo M, Watanabe M, Tao K, Kamijo S, Inoue M. Chem. Sci. 2014; 5: 4339
  • 47 Paul S, Guin J. Green Chem. 2017; 19: 2530
    • 48a Papadopoulos GN, Limnios D, Kokotos CG. Chem. Eur. J. 2014; 20: 13811
    • 48b Papadopoulos GN, Kokotos CG. Chem. Eur. J. 2016; 22: 6964
    • 48c Papadopoulos GN, Kokotos CG. J. Org. Chem. 2016; 81: 7023
    • 48d Kaplaneris N, Bisticha A, Papadopoulos GN, Limnios D, Kokotos CG. Green Chem. 2017; 19: 4451
    • 48e Papadopoulos GN, Voutyritsa E, Kaplaneris N, Kokotos CG. Chem. Eur. J. 2018; 24: 1726
    • 48f Voutyritsa E, Kokotos CG. Angew. Chem. Int. Ed. 2020; 59: 1735
  • 49 Papadopoulos GN, Kokotou MG, Spiliopoulou N, Nikitas NF, Voutyritsa E, Tzaras DI, Kaplaneris N, Kokotos CG. ChemSusChem 2020; 13: 5934
  • 50 Wang Y, Shih Y, Wu Y, Ryu I. Adv. Synth. Catal. 2022; 364: 1039
    • 51a Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
    • 51b Fukuyama T, Nishikawa T, Ryu I. Eur. J. Org. Chem. 2020; 1424
    • 51c Fukuyama T, Yamada K, Nishikawa T, Ravelli D, Fagnoni M, Ryu I. Chem. Lett. 2018; 47: 207
    • 51d Yamada K, Fukuyama T, Fujii S, Ravelli D, Fagnoni M, Ryu I. Chem. Eur. J. 2017; 23: 8615
    • 51e Fukuyama T, Nishikawa T, Yamada K, Ravelli D, Fagnoni M, Ryu I. Org. Lett. 2017; 19: 6436
    • 51f Okada M, Fukuyama T, Yamada K, Ryu I, Ravelli D, Fagnoni M. Chem. Sci. 2014; 5: 2893
  • 52 Ueda M, Kamikawa K, Fukuyama T, Wang Y, Wu Y, Ryu I. Angew. Chem. Int. Ed. 2021; 60: 3545
  • 53 Hwang JY, Lee SH, Kim Y, Jin M, Kang K, Kang EJ. Org. Lett. 2023; 25: 7359
    • 54a Hwang JY, Ji AY, Lee SH, Kang EJ. Org. Lett. 2020; 22: 16
    • 54b Park DY, Hwang JY, Kang EJ. Bull. Korean Chem. Soc. 2021; 42: 798
    • 55a Wu X. Chem. Eur. J. 2015; 21: 12252
    • 55b Sharma S, Mishra NK, Shin Y, Kim IS. Curr. Org. Chem. 2015; 20: 471
    • 55c Liu Y.-L, Ouyang Y.-J, Zheng H, Liu H, Wei W.-T. Chem. Commun. 2021; 57: 6111
    • 55d Kumar P, Dutta S, Kumar S, Bahadur V, Van der Eycken EV, Vimaleswaran KS, Parmar VS, Singh BK. Org. Biomol. Chem. 2020; 18: 7987
    • 55e Pan L.-W, Taniguchi N, Hyodo M, Ryu I. Eur. J. Org. Chem. 2024; in press DOI: 10.1002/ejoc.202400138.
  • 56 Yan J, Tang H, Kuek EJ. R, Shi X, Liu C, Zhang M, Piper JL, Duan S, Wu J. Nat. Commun. 2021; 12: 7214
    • 57a Ni Z, Zhang Q, Xiong T, Zheng Y, Li Y, Zhang H, Zhang J, Liu Q. Angew. Chem. Int. Ed. 2012; 51: 1244
    • 57b Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science 2016; 353: 1014
    • 57c Zhang W, Chen P, Liu G. J. Am. Chem. Soc. 2017; 139: 7709
    • 57d Hu H, Chen SJ, Mandal M, Pratik SM, Buss JA, Krska SW, Cramer CJ, Stahl SS. Nat. Catal. 2020; 3: 358
    • 57e Suh SE, Chen SJ, Mandal M, Guzei IA, Cramer CJ, Stahl SS. J. Am. Chem. Soc. 2020; 142: 11388
  • 58 Na CG, Ravelli D, Alexanian EJ. J. Am. Chem. Soc. 2020; 142: 44
  • 59 Mao R, Bera S, Turla AC, Hu X. J. Am. Chem. Soc. 2021; 143: 14667
  • 60 Knowles OJ, Johannissen LO, Crisenza GE. M, Hay S, Leys D, Procter DJ. Angew. Chem. Int. Ed. 2022; 61: e202212158
  • 61 Anderton AS, Knowles OJ, Rossi-Ashton JA, Procter DJ. ACS Catal. 2024; 14: 2395
  • 62 Matsumoto A, Yamamoto M, Maruoka K. ACS Catal. 2022; 12: 2045
  • 63 Shi Y.-L, Huang S.-H, Wu Y.-K, Ryu I. Bull. Chem. Soc. Jpn. 2022; 95: 1501