CC BY 4.0 · SynOpen 2025; 09(01): 73-83
DOI: 10.1055/s-0043-1775424
paper

Synthesis, In Vitro and In Silico Molecular Docking Studies of Novel Phthalimide–Pyrimidine Hybrid Analogues to Thalidomide as Potent Antitubercular Agents

Wael Shehta
a   Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
,
Norah A. Alsaiari
b   Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
,
Basant Farag
a   Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
,
Marwa M. Abdel-Aziz
c   Medical Microbiology at the Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
,
a   Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
,
Sherin M Elfeky
d   Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 355516, Egypt
,
Samar El-Kalyoubi
e   Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
,
Nermine A. Osman
f   Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt
› Author Affiliations
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


Abstract

Condensation reaction of aromatic aldehydes with 2-(6-amino-2-chloropyrimidin-4-yl)isoindoline-1,3-dione and 2-(6-amino-2-hydrazineylpyrimidin-4-yl)isoindoline-1,3-dione afforded 2-(2-chloro-6-((3 alkylbenzylidene)amino) pyrimidin-4-yl)isoindoline-1,3-dione derivatives 6af and 2-(6-amino-2-(2-(arylidene)hydrazinyl)pyrimidin-4-yl)isoindoline-1,3-dione derivatives 8af, respectively, as phthalimide–aminopyrimidine hybrids. The compounds showed a wide range of antitubercular activities against sensitive MDR and XDR M. tuberculosis strains, with 8f and 6a showing the highest activity; these compounds inhibited sensitive M. tuberculosis with MIC of 0.48 and 0.98 μg/mL, respectively, comparable to isonizide (INH) (MIC = 0.12 μg/mL). Both 8f and 6a inhibited the MDR strain with MIC of 1.95 and 7.81 μg/mL, respectively, and XRD with MIC of 7.81 and 15.63 μg/mL, respectively. Both 8f and 6a inhibited mycobacterial InhA enzyme in vitro (IC50 = 0.717± 0.033 μM and 1.646± 0.069 μM, respectively). Molecular docking simulations revealed that 8f and 6a were also capable of interacting at the catalytic site of the InhA enzyme via binding with NAD+ and Tyr158, in a manner similar to that of the native ligand. Compounds 6a and 8f exhibited physicochemical properties of oral bioavailable drug-like compounds with high gastrointestinal absorption. Predictions showed that the compounds are unlikely to have side effects on the CNS and no anticipated hepatotoxicity, mutagenicity, or acute oral toxicity was identified in models.

Supporting Information



Publication History

Received: 09 September 2024

Accepted after revision: 18 October 2024

Article published online:
10 February 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Modi P, Patel S, Chhabria M. Bioorg. Chem. 2019; 87: 240
  • 2 Tiberi S, Muñoz-Torrico M, Duarte R, Dalcolmo M, D’Ambrosio L, Migliori G.-B. Pulmonology 2018; 24: 86
  • 3 Augustynowicz-Kopeć E, Demkow U, Grzelewska-Rzymowska I, Korzeniewska-Koseła M, Langfort R, Michałowska-Mitczuk D, Rowińska-Zakrzewska E, Zielonka TM, Ziołkowski J, Zwolska Z. Adv. Respir. Med. 2013; 81: 323
  • 4 Mondal R, Jain A. Emerging Infect. Dis. 2007; 13: 1429
  • 5 Vale N, Gomes P, Santos HA. Curr. Drug Metab. 2013; 14: 151
  • 6 Rawat R, Whitty A, Tonge PJ. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 13881
  • 7 Takayama K, Wang C, Besra GS. Clin. Microbiol. Rev. 2005; 18: 81
  • 8 AlMatar M, Makky EA, Var I, Kayar B, Köksal F. Pharmacol. Rep. 2018; 70: 217
  • 9 Wang L.-Q, Falany CN, James MO. Drug Metab. Dispos. 2004; 32: 1162
  • 10 He X, Alian A, Stroud R, Ortiz de Montellano PR. J. Med. Chem. 2006; 49: 6308
  • 11 Ng PS, Manjunatha UH, Rao SP, Camacho LR, Ma NL, Herve M, Noble CG, Goh A, Peukert S, Diagana TT. Eur. J. Med. Chem. 2015; 106: 144
  • 12 Pajk S, Živec M, Šink R, Sosič I, Neu M, Chung C.-w, Martínez-Hoyos M, Pérez-Herrán E, Álvarez-Gómez D, Álvarez-Ruíz E. Eur. J. Med. Chem. 2016; 112: 252
  • 13 Yar MS, Siddiqui AA, Ali MA. J. Chin. Chem. Soc. 2007; 54: 5
  • 14 Othman DI, Hamdi A, Abdel-Aziz MM, Elfeky SM. Bioorg. Chem. 2022; 124: 105809
  • 15 Phatak PS, Bakale RD, Dhumal ST, Dahiwade LK, Choudhari PB, Siva Krishna V, Sriram D, Haval KP. Synth. Commun. 2019; 49: 2017
  • 16 Rani A, Johansen MD, Roquet-Banères F, Kremer L, Awolade P, Ebenezer O, Singh P, Kumar V. Bioorg. Med. Chem. Lett. 2020; 30: 127576
  • 17 Jesumoroti OJ, Beteck RM, Jordaan A, Warner DF, Legoabe LJ. Mol. Diversity 2023; 27: 753
  • 18 Al-Soliemy AM, Sabour R, Farghaly TA. Med. Chem. 2022; 18: 181
  • 19 Finger V, Kufa M, Soukup O, Castagnolo D, Roh J, Korabecny J. Eur. J. Med. Chem. 2023; 246: 114946
  • 20 Kamal A, Adil S, Tamboli JR, Siddardha B, Murthy U. Lett. Drug Des. Discovery 2008; 5: 261
  • 21 Malik MS, Adil SF, Seddigi ZS, Morad M, Jassas RS, Thagafi II, Altass HM, Jamal QM. S, Riyaz S, Alsantali RI. J. Saudi Chem. Soc. 2021; 25: 101226
  • 22 Totawar P, Varala R, Kotra V, Pulle J. Curr. Chem. Lett. 2023; 12: 249
  • 23 Pan P, Tonge P. Curr. Top. Med. Chem. 2012; 12: 672
  • 24 Youssif S, El-Bahaie S, Nabih E. J. Chem. Res. 1999; 23: 112
  • 25 Youssif S, Mohamed SF. Monatsh. Chem. 2008; 139: 161
  • 26 Farag B, Agili F, El-Kalyoubi S, Said SA, Youssif S, Shehta W. ChemistrySelect 2022; 7: e202103834
  • 27 Wang H, Wen K, Wang L, Xiang Y, Xu X, Shen Y, Sun Z. Molecules 2012; 17: 4533
  • 28 Shehta W, Agili F, Farag B, Youssif S, Almehmadi SJ, Elfeky SM, El-Kalyoubi S. Future Med. Chem. 2023; 15: 661
  • 29 Sivaraman S. Dissertation . State University of New York at Stony Brook; U.S.A.: 2002
  • 30 Sabbah M, Mendes V, Vistal RG, Dias DM, Záhorszká M, Mikusova K, Korduláková J, Coyne AG, Blundell TL, Abell C. J. Med. Chem. 2020; 63: 4749
  • 31 Elfeky SM, Sobahi TR, Gineinah MM, Ahmed NS. Arch. Pharm. 2020; 353: 1900211
  • 32 Kamsri P, Hanwarinroj C, Phusi N, Pornprom T, Chayajarus K, Punkvang A, Suttipanta N, Srimanote P, Suttisintong K, Songsiriritthigul C. J. Chem. Inf. Model. 2019; 60: 226
  • 33 Freundlich JS, Wang F, Vilchèze C, Gulten G, Langley R, Schiehser GA, Jacobus DP, Jacobs WR. Jr, Sacchettini JC. ChemMedChem 2009; 4: 241
  • 34 Srivastava A. J. Xi’an Shiyou Uni., Nat. Sci. Ed. 2021; 17: 267
  • 35 Paradkar MV, Gadre SY, Pujari TA, Khandekar PP, Kumbhar VB. Synth. Commun. 2005; 35: 471
  • 36 Lu Y, Zheng M, Wang B, Fu L, Zhao W, Li P, Xu J, Zhu H, Jin H, Yin D. Antimicrob. Agents Chemother. 2011; 55: 5185
  • 37 Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Abdel-Aziz HA, Abou-Seri SM, Mohammed ER. J. Enzyme Inhib. Med. Chem. 2021; 36: 384