CC BY 4.0 · Eur J Dent 2024; 18(02): 448-457
DOI: 10.1055/s-0043-1775726
Review Article

Cell Junctions in Periodontal Health and Disease: An Insight

Lakshmi Puzhankara
1   Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
,
Anjale Rajagopal
1   Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
,
Madhurya N. Kedlaya
1   Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
,
Shaswata Karmakar
1   Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
,
Namratha Nayak
1   Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
,
1   Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
› Author Affiliations

Abstract

Cells are the building blocks of all living organisms. The presence of cell junctions such as tight junctions, gap junctions, and anchoring junctions between cells play a role in cell-to-cell communication in periodontal health and disease. A literature search was done in Scopus, PubMed, and Web of Science to gather information about the effect of cell junctions on periodontal health and disease. The presence of tight junction in the oral cavity helps in cell-to-cell adhesiveness and assists in the barrier function. The gap junctions help in controlling growth and development and in the cell signaling process. The presence of desmosomes and hemidesmosomes as anchoring junctions aid in mechanical strength and tissue integrity. Periodontitis is a biofilm-induced disease leading to the destruction of the supporting structures of the tooth. The structures of the periodontium possess multiple cell junctions that play a significant role in periodontal health and disease as well as periodontal tissue healing. This review article provides an insight into the role of cell junctions in periodontal disease and health, and offers concepts for development of therapeutic strategies through manipulation of cell junctions.

Authors' Contribution

L.P. conceived the design and structure of the study, contributed to the main text, and designed the original figures in the manuscript. A.R. contributed to the main text and verified and revised the manuscript. M.N.K. contributed to the main text and participated in the final approval of the text. S.K. contributed to the main text and participated in the final approval of the text. N.N. contributed to the main text and participated in the final approval of the text. S.S. contributed to the main text and participated in the final approval of the text.




Publication History

Article published online:
04 December 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Vickaryous MK, Hall BK. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev Camb Philos Soc 2006; 81 (03) 425-455
  • 2 Lane N, Martin W. The energetics of genome complexity. Nature 2010; 467 (7318) 929-934
  • 3 McCrea PD, Gu D, Balda MS. Junctional music that the nucleus hears: cell-cell contact signaling and the modulation of gene activity. Cold Spring Harb Perspect Biol 2009; 1 (04) a002923
  • 4 Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers 2021; 9 (01) 1848212
  • 5 Samiei M, Ahmadian E, Eftekhari A, Eghbal MA, Rezaie F, Vinken M. Cell junctions and oral health. EXCLI J 2019; 18: 317-330
  • 6 Groeger SE, Meyle J. Epithelial barrier and oral bacterial infection. Periodontol 2000 2015; 69 (01) 46-67
  • 7 Alberts B, Johnson A, Lewis J. et al. Molecular Biology of the Cell. New York, NY: Garland Science; 2015
  • 8 Aberle H, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 1994; 107 (Pt 12): 3655-3663
  • 9 Lock JG, Wehrle-Haller B, Strömblad S. Cell-matrix adhesion complexes: master control machinery of cell migration. Semin Cancer Biol 2008; 18 (01) 65-76
  • 10 Groeger S, Meyle J. Oral mucosal epithelial cells. Front Immunol 2019; 10: 208
  • 11 Hashimoto S, Yamamura T, Shimono M. Morphometric analysis of the intercellular space and desmosomes of rat junctional epithelium. J Periodontal Res 1986; 21 (05) 510-520
  • 12 Bosshardt DD. The periodontal pocket: pathogenesis, histopathology and consequences. Periodontol 2000 2018; 76 (01) 43-50
  • 13 Kowalczyk AP, Green KJ. Structure, function, and regulation of desmosomes. Prog Mol Biol Transl Sci 2013; 116: 95-118
  • 14 Elias PM, Matsuyoshi N, Wu H. et al. Desmoglein isoform distribution affects stratum corneum structure and function. J Cell Biol 2001; 153 (02) 243-249
  • 15 Listgarten MA. Electron microscopic study of the gingivo-dental junction of man. Am J Anat 1966; 119 (01) 147-177
  • 16 Hormia M, Owaribe K, Virtanen I. The dento-epithelial junction: cell adhesion by type I hemidesmosomes in the absence of a true basal lamina. J Periodontol 2001; 72 (06) 788-797
  • 17 Nikolopoulos SN, Blaikie P, Yoshioka T. et al. Targeted deletion of the integrin β4 signaling domain suppresses laminin-5-dependent nuclear entry of mitogen-activated protein kinases and NF-kappaB, causing defects in epidermal growth and migration. Mol Cell Biol 2005; 25 (14) 6090-6102
  • 18 Litjens SHM, de Pereda JM, Sonnenberg A. Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol 2006; 16 (07) 376-383
  • 19 Larjava H, Koivisto L, Häkkinen L, Heino J. Epithelial integrins with special reference to oral epithelia. J Dent Res 2011; 90 (12) 1367-1376
  • 20 Bosshardt DD, Lang NP. The junctional epithelium: from health to disease. J Dent Res 2005; 84 (01) 9-20
  • 21 Aumailley M, El Khal A, Knöss N, Tunggal L. Laminin 5 processing and its integration into the ECM. Matrix Biol 2003; 22 (01) 49-54
  • 22 Murgia C, Blaikie P, Kim N, Dans M, Petrie HT, Giancotti FG. Cell cycle and adhesion defects in mice carrying a targeted deletion of the integrin beta4 cytoplasmic domain. EMBO J 1998; 17 (14) 3940-3951
  • 23 Hormia M, Virtanen I, Quaranta V. Immunolocalization of integrin alpha 6 beta 4 in mouse junctional epithelium suggests an anchoring function to both the internal and the external basal lamina. J Dent Res 1992; 71 (08) 1503-1508
  • 24 Wilhelmsen K, Litjens SHM, Kuikman I, Margadant C, van Rheenen J, Sonnenberg A. Serine phosphorylation of the integrin beta4 subunit is necessary for epidermal growth factor receptor induced hemidesmosome disruption. Mol Biol Cell 2007; 18 (09) 3512-3522
  • 25 Paul O, Arora P, Mayer M, Chatterjee S. Inflammation in periodontal disease: possible link to vascular disease. Front Physiol 2021; 11: 609614
  • 26 Ewert P, Aguilera S, Alliende C. et al. Disruption of tight junction structure in salivary glands from Sjögren's syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum 2010; 62 (05) 1280-1289
  • 27 Furuse M, Sasaki H, Fujimoto K, Tsukita S. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 1998; 143 (02) 391-401
  • 28 Rawat M, Nighot M, Al-Sadi R. et al. IL1B increases intestinal tight junction permeability by up-regulation of MIR200C-3p, which degrades occludin mRNA. Gastroenterology 2020; 159 (04) 1375-1389
  • 29 Liu Y, Huang W, Wang J. et al. Multifaceted impacts of periodontal pathogens in disorders of the intestinal barrier. Front Immunol 2021; 12: 693479
  • 30 Jara PI, Boric MP, Sáez JC. Leukocytes express connexin 43 after activation with lipopolysaccharide and appear to form gap junctions with endothelial cells after ischemia-reperfusion. Proc Natl Acad Sci U S A 1995; 92 (15) 7011-7015
  • 31 Tsuchida S, Arai Y, Kishida T. et al. Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis. J Orthop Res 2013; 31 (04) 525-530
  • 32 Jiang JX, Penuela S. Connexin and pannexin channels in cancer. BMC Cell Biol 2016; 17 (Suppl. 01) 12
  • 33 Silverman WR, de Rivero Vaccari JP, Locovei S. et al. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 2009; 284 (27) 18143-18151
  • 34 Flak MB, Colas RA, Muñoz-Atienza E, Curtis MA, Dalli J, Pitzalis C. Inflammatory arthritis disrupts gut resolution mechanisms, promoting barrier breakdown by Porphyromonas gingivalis . JCI Insight 2019; 4 (13) e125191
  • 35 Schroeder HE, Listgarten MA. The gingival tissues: the architecture of periodontal protection. Periodontol 2000 1997; 13 (01) 91-120
  • 36 Fujita T, Yoshimoto T, Kajiya M. et al. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease. Jpn Dent Sci Rev 2018; 54 (02) 66-75
  • 37 Fujita T, Firth JD, Kittaka M, Ekuni D, Kurihara H, Putnins EE. Loss of claudin-1 in lipopolysaccharide-treated periodontal epithelium. J Periodontal Res 2012; 47 (02) 222-227
  • 38 Katz J, Sambandam V, Wu JH, Michalek SM, Balkovetz DF. Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes. Infect Immun 2000; 68 (03) 1441-1449
  • 39 Wessler S, Backert S. Molecular mechanisms of epithelial-barrier disruption by Helicobacter pylori . Trends Microbiol 2008; 16 (08) 397-405
  • 40 Petricca G, Leppilampi M, Jiang G. et al. Localization and potential function of kindlin-1 in periodontal tissues. Eur J Oral Sci 2009; 117 (05) 518-527
  • 41 Wiebe CB, Petricca G, Häkkinen L, Jiang G, Wu C, Larjava HS. Kindler syndrome and periodontal disease: review of the literature and a 12-year follow-up case. J Periodontol 2008; 79 (05) 961-966
  • 42 Hintermann E, Haake SK, Christen U, Sharabi A, Quaranta V. Discrete proteolysis of focal contact and adherens junction components in Porphyromonas gingivalis-infected oral keratinocytes: a strategy for cell adhesion and migration disabling. Infect Immun 2002; 70 (10) 5846-5856
  • 43 Katz J, Yang QB, Zhang P. et al. Hydrolysis of epithelial junctional proteins by Porphyromonas gingivalis gingipains. Infect Immun 2002; 70 (05) 2512-2518
  • 44 Guo W, Wang P, Liu ZH, Ye P. Analysis of differential expression of tight junction proteins in cultured oral epithelial cells altered by Porphyromonas gingivalis, Porphyromonas gingivalis lipopolysaccharide, and extracellular adenosine triphosphate. Int J Oral Sci 2018; 10 (01) e8
  • 45 Nakagawa I, Amano A, Inaba H, Kawai S, Hamada S. Inhibitory effects of Porphyromonas gingivalis fimbriae on interactions between extracellular matrix proteins and cellular integrins. Microbes Infect 2005; 7 (02) 157-163
  • 46 Takahashi N, Sulijaya B, Yamada-Hara M, Tsuzuno T, Tabeta K, Yamazaki K. Gingival epithelial barrier: regulation by beneficial and harmful microbes. Tissue Barriers 2019; 7 (03) e1651158
  • 47 Uchida Y, Shiba H, Komatsuzawa H. et al. Irsogladine maleate influences the response of gap junctional intercellular communication and IL-8 of human gingival epithelial cells following periodontopathogenic bacterial challenge. Biochem Biophys Res Commun 2005; 333 (02) 502-507
  • 48 Fujita T, Ashikaga A, Shiba H. et al. Regulation of IL-8 by Irsogladine maleate is involved in abolishment of Actinobacillus actinomycetemcomitans-induced reduction of gap-junctional intercellular communication. Cytokine 2006; 34 (5–6): 271-277
  • 49 Damek-Poprawa M, Korostoff J, Gill R, DiRienzo JM. Cell junction remodeling in gingival tissue exposed to a microbial toxin. J Dent Res 2013; 92 (06) 518-523
  • 50 Uitto VJ, Pan YM, Leung WK. et al. Cytopathic effects of Treponema denticola chymotrypsin-like proteinase on migrating and stratified epithelial cells. Infect Immun 1995; 63 (09) 3401-3410
  • 51 Liu J, Wang Y, Meng H. et al. Butyrate rather than LPS subverts gingival epithelial homeostasis by downregulation of intercellular junctions and triggering pyroptosis. J Clin Periodontol 2019; 46 (09) 894-907
  • 52 Rollenhagen C, Wöllert T, Langford GM, Sundstrom P. Stimulation of cell motility and expression of late markers of differentiation in human oral keratinocytes by Candida albicans . Cell Microbiol 2009; 11 (06) 946-966
  • 53 Saliem SS, Bede SY, Cooper PR, Abdulkareem AA, Milward MR, Abdullah BH. Pathogenesis of periodontitis: a potential role for epithelial-mesenchymal transition. Jpn Dent Sci Rev 2022; 58: 268-278
  • 54 Yost S, Stashenko P, Choi Y. et al. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int J Oral Sci 2018; 10 (04) 32
  • 55 Abdulkareem AA, Shelton RM, Landini G, Cooper PR, Milward MR. Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial-mesenchymal transition. J Periodontal Res 2018; 53 (04) 565-574
  • 56 Borradori L, Sonnenberg A. Structure and function of hemidesmosomes: more than simple adhesion complexes. J Invest Dermatol 1999; 112 (04) 411-418
  • 57 Häkkinen L, Hildebrand HC, Berndt A, Kosmehl H, Larjava H. Immunolocalization of tenascin-C, alpha9 integrin subunit, and alphavbeta6 integrin during wound healing in human oral mucosa. J Histochem Cytochem 2000; 48 (07) 985-998
  • 58 Haapasalmi K, Zhang K, Tonnesen M. et al. Keratinocytes in human wounds express alpha v beta 6 integrin. J Invest Dermatol 1996; 106 (01) 42-48
  • 59 Singh P, Chen C, Pal-Ghosh S, Stepp MA, Sheppard D, Van De Water L. Loss of integrin alpha9beta1 results in defects in proliferation, causing poor re-epithelialization during cutaneous wound healing. J Invest Dermatol 2009; 129 (01) 217-228
  • 60 Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 1997; 137 (06) 1445-1457
  • 61 Koivisto L, Larjava K, Häkkinen L, Uitto VJ, Heino J, Larjava H. Different integrins mediate cell spreading, haptotaxis and lateral migration of HaCaT keratinocytes on fibronectin. Cell Adhes Commun 1999; 7 (03) 245-257
  • 62 Ingham KC, Brew SA, Erickson HP. Localization of a cryptic binding site for tenascin on fibronectin. J Biol Chem 2004; 279 (27) 28132-28135
  • 63 Reynolds LE, Conti FJ, Silva R. et al. Alpha3beta1 integrin-controlled Smad7 regulates reepithelialization during wound healing in mice. J Clin Invest 2008; 118 (03) 965-974
  • 64 Hodivala-Dilke KM, DiPersio CM, Kreidberg JA, Hynes RO. Novel roles for alpha3beta1 integrin as a regulator of cytoskeletal assembly and as a trans-dominant inhibitor of integrin receptor function in mouse keratinocytes. J Cell Biol 1998; 142 (05) 1357-1369
  • 65 Goldfinger LE, Hopkinson SB, deHart GW, Collawn S, Couchman JR, Jones JC. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin. J Cell Sci 1999; 112 (Pt 16): 2615-2629
  • 66 Jones JCR, Asmuth J, Baker SE, Langhofer M, Roth SI, Hopkinson SB. Hemidesmosomes: extracellular matrix/intermediate filament connectors. Exp Cell Res 1994; 213 (01) 1-11
  • 67 Kinumatsu T, Hashimoto S, Muramatsu T. et al. Involvement of laminin and integrins in adhesion and migration of junctional epithelium cells. J Periodontal Res 2009; 44 (01) 13-20
  • 68 Guess CM, Quaranta V. Defining the role of laminin-332 in carcinoma. Matrix Biol 2009; 28 (08) 445-455
  • 69 Goldfinger LE, Stack MS, Jones JCR. Processing of laminin-5 and its functional consequences: role of plasmin and tissue-type plasminogen activator. J Cell Biol 1998; 141 (01) 255-265
  • 70 Nguyen BP, Ryan MC, Gil SG, Carter WG. Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Curr Opin Cell Biol 2000; 12 (05) 554-562
  • 71 Pirilä E, Sharabi A, Salo T. et al. Matrix metalloproteinases process the laminin-5 γ 2-chain and regulate epithelial cell migration. Biochem Biophys Res Commun 2003; 303 (04) 1012-1017
  • 72 Remy L, Trespeuch C, Bachy S, Scoazec JY, Rousselle P. Matrilysin 1 influences colon carcinoma cell migration by cleavage of the laminin-5 beta3 chain. Cancer Res 2006; 66 (23) 11228-11237
  • 73 Uitto VJ, Salonen JI, Firth JD, Jousimies-Somer H, Saarialho-Kere U. Matrilysin (matrix metalloproteinase-7) expression in human junctional epithelium. J Dent Res 2002; 81 (04) 241-246
  • 74 Ryan MC, Lee K, Miyashita Y, Carter WG. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol 1999; 145 (06) 1309-1323
  • 75 McLean WHI, Irvine AD, Hamill KJ. et al. An unusual N-terminal deletion of the laminin alpha3a isoform leads to the chronic granulation tissue disorder laryngo-onycho-cutaneous syndrome. Hum Mol Genet 2003; 12 (18) 2395-2409
  • 76 Tarzemany R, Jiang G, Larjava H, Häkkinen L. Expression and function of connexin 43 in human gingival wound healing and fibroblasts. PLoS One 2015; 10 (01) e0115524
  • 77 Saitoh M, Oyamada M, Oyamada Y, Kaku T, Mori M. Changes in the expression of gap junction proteins (connexins) in hamster tongue epithelium during wound healing and carcinogenesis. Carcinogenesis 1997; 18 (07) 1319-1328
  • 78 Li X, Guo L, Yang X. et al. TGF-β1-induced connexin43 promotes scar formation via the Erk/MMP-1/collagen III pathway. J Oral Rehabil 2020; 47 (Suppl. 01) 99-106
  • 79 Fried K, Mitsiadis TA, Guerrier A, Haegerstrand A, Meister B. Combinatorial expression patterns of the connexins 26, 32, and 43 during development, homeostasis, and regeneration of rat teeth. Int J Dev Biol 1996; 40 (05) 985-995
  • 80 Yamaoka Y, Sawa Y, Ebata N, Ibuki N, Yoshida S, Kawasaki T. Double expressions of connexin 43 and 32 in human periodontal ligament fibroblasts. Tissue Cell 2000; 32 (04) 328-335
  • 81 Ibuki N, Yamaoka Y, Sawa Y, Kawasaki T, Yoshida S. Different expressions of connexin 43 and 32 in the fibroblasts of human dental pulp. Tissue Cell 2002; 34 (03) 170-176
  • 82 Kato R, Ishihara Y, Kawanabe N. et al. Gap-junction-mediated communication in human periodontal ligament cells. J Dent Res 2013; 92 (07) 635-640
  • 83 Abe-Yutori M, Chikazawa T, Shibasaki K, Murakami S. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodontal Res 2017; 52 (01) 42-50
  • 84 Hummel S, Veltman K, Cichon C, Sonnenborn U, Schmidt MA. Differential targeting of the E-cadherin/β-catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl Environ Microbiol 2012; 78 (04) 1140-1147
  • 85 Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69 (01) 11-25
  • 86 Heino J, Massagué J. Transforming growth factor-β switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. J Biol Chem 1989; 264 (36) 21806-21811
  • 87 Xu J, Clark RAF. Extracellular matrix alters PDGF regulation of fibroblast integrins. J Cell Biol 1996; 132 (1–2) 239-249
  • 88 Cáceres M, Hidalgo R, Sanz A, Martínez J, Riera P, Smith PC. Effect of platelet-rich plasma on cell adhesion, cell migration, and myofibroblastic differentiation in human gingival fibroblasts. J Periodontol 2008; 79 (04) 714-720
  • 89 Martin P. Wound healing: aiming for perfect skin regeneration. Science 1997; 276 (5309) 75-81
  • 90 Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002; 3 (05) 349-363
  • 91 Arora PD, McCulloch CAG. Dependence of collagen remodelling on alpha-smooth muscle actin expression by fibroblasts. J Cell Physiol 1994; 159 (01) 161-175