Semin Musculoskelet Radiol 2023; 27(06): 641-648
DOI: 10.1055/s-0043-1775742
Review Article

Diffusion Tensor Imaging of Peripheral Nerves: Current Status and New Developments

Daehyun Yoon
1   Department of Radiology and Biomedical Imaging, School of Medicine, University of California at San Francisco, San Francisco, California
,
Amelie M. Lutz
2   Department of Radiology, Kantonal Hospital Thurgau, Muensterlingen, Switzerland
› Institutsangaben

Abstract

Diffusion tensor imaging (DTI) is an emerging technique for peripheral nerve imaging that can provide information about the microstructural organization and connectivity of these nerves and complement the information gained from anatomical magnetic resonance imaging (MRI) sequences. With DTI it is possible to reconstruct nerve pathways and visualize the three-dimensional trajectory of nerve fibers, as in nerve tractography. More importantly, DTI allows for quantitative evaluation of peripheral nerves by the calculation of several important parameters that offer insight into the functional status of a nerve. Thus DTI has a high potential to add value to the work-up of peripheral nerve pathologies, although it is more technically demanding. Peripheral nerves pose specific challenges to DTI due to their small diameter and DTI's spatial resolution, contrast, location, and inherent field inhomogeneities when imaging certain anatomical locations. Numerous efforts are underway to resolve these technical challenges and thus enable wider acceptance of DTI in peripheral nerve MRI.



Publikationsverlauf

Artikel online veröffentlicht:
07. November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Cage TA, Yuh EL, Hou SW. et al. Visualization of nerve fibers and their relationship to peripheral nerve tumors by diffusion tensor imaging. Neurosurg Focus 2015; 39 (03) E16
  • 2 Jeon T, Fung MM, Koch KM, Tan ET, Sneag DB. Peripheral nerve diffusion tensor imaging: overview, pitfalls, and future directions. J Magn Reson Imaging 2018; 47 (05) 1171-1189
  • 3 O'Donnell LJ, Westin CF. An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 2011; 22 (02) 185-196 , viii
  • 4 Kronlage M, Schwehr V, Schwarz D. et al. Peripheral nerve diffusion tensor imaging (DTI): normal values and demographic determinants in a cohort of 60 healthy individuals. Eur Radiol 2018; 28 (05) 1801-1808
  • 5 Guggenberger R, Nanz D, Bussmann L. et al. Diffusion tensor imaging of the median nerve at 3.0 T using different MR scanners: agreement of FA and ADC measurements. Eur J Radiol 2013; 82 (10) e590-e596
  • 6 Guggenberger R, Markovic D, Eppenberger P. et al. Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. Radiology 2012; 265 (01) 194-203
  • 7 Martín Noguerol T, Barousse R, Gómez Cabrera M, Socolovsky M, Bencardino JT, Luna A. Functional MR neurography in evaluation of peripheral nerve trauma and postsurgical assessment. Radiographics 2019; 39 (02) 427-446
  • 8 Bäumer P, Pham M, Ruetters M. et al. Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 2014; 273 (01) 185-193
  • 9 Ahlawat S, Blakeley JO, Rodriguez FJ, Fayad LM. Imaging biomarkers for malignant peripheral nerve sheath tumors in neurofibromatosis type 1. Neurology 2019; 93 (11) e1076-e1084
  • 10 Mazal AT, Ashikyan O, Cheng J, Le LQ, Chhabra A. Diffusion-weighted imaging and diffusion tensor imaging as adjuncts to conventional MRI for the diagnosis and management of peripheral nerve sheath tumors: current perspectives and future directions. Eur Radiol 2019; 29 (08) 4123-4132
  • 11 Kim HS, Yoon YC, Choi BO, Jin W, Cha JG, Kim JH. Diffusion tensor imaging of the sciatic nerve in Charcot-Marie-Tooth disease type I patients: a prospective case-control study. Eur Radiol 2019; 29 (06) 3241-3252
  • 12 Wu C, Wang G, Zhao Y. et al. Assessment of tibial and common peroneal nerves in diabetic peripheral neuropathy by diffusion tensor imaging: a case control study. Eur Radiol 2017; 27 (08) 3523-3531
  • 13 Chung T, Prasad K, Lloyd TE. Peripheral neuropathy: clinical and electrophysiological considerations. Neuroimaging Clin N Am 2014; 24 (01) 49-65
  • 14 Ho MJ, Held U, Steigmiller K. et al. Comparison of electrodiagnosis, neurosonography and MR neurography in localization of ulnar neuropathy at the elbow. J Neuroradiol 2022; 49 (01) 9-16
  • 15 Breitenseher J, Jengojan SA, Kovar F, Prayer D, Kasprian G. Mapping of transient peripheral nerve compression by 3 Tesla DTI (C-226). Poster presented at: European Society of Radiology; March 6–10, 2014; Vienna, Austria
  • 16 Chen YY, Zhang X, Lin XF. et al. DTI metrics can be used as biomarkers to determine the therapeutic effect of stem cells in acute peripheral nerve injury. J Magn Reson Imaging 2017; 45 (03) 855-862
  • 17 Le Bihan D, Breton E. Imagerie de diffusion in vivo par resonance magnetique nucleaire. CR Acad Sci Paris 1985; 301: 1109-1112
  • 18 Taylor DG, Bushell MC. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol 1985; 30 (04) 345-349
  • 19 Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965; 42: 288-292
  • 20 Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994; 103 (03) 247-254
  • 21 Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996; 201 (03) 637-648
  • 22 Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153 (01) 189-194
  • 23 Hu Z, Wang Y, Dong Z, Guo H. Water/fat separation for distortion-free EPI with point spread function encoding. Magn Reson Med 2019; 82 (01) 251-262
  • 24 Dong Y, Koolstra K, Riedel M, van Osch MJP, Börnert P. Regularized joint water-fat separation with B0 map estimation in image space for 2D-navigated interleaved EPI based diffusion MRI. Magn Reson Med 2021; 86 (06) 3034-3051
  • 25 Bruno F, Arrigoni F, Mariani S. et al. Application of diffusion tensor imaging (DTI) and MR-tractography in the evaluation of peripheral nerve tumours: state of the art and review of the literature. Acta Biomed 2019; 90 (5-S): 68-76
  • 26 Eppenberger P, Andreisek G, Chhabra A. Magnetic resonance neurography: diffusion tensor imaging and future directions. Neuroimaging Clin N Am 2014; 24 (01) 245-256
  • 27 Foesleitner O, Sulaj A, Sturm V. et al. Diffusion MRI in peripheral nerves: optimized b values and the role of non-Gaussian diffusion. Radiology 2022; 302 (01) 153-161
  • 28 Chianca V, Albano D, Messina C. et al. Diffusion tensor imaging in the musculoskeletal and peripheral nerve systems: from experimental to clinical applications. Eur Radiol Exp 2017; 1 (01) 12
  • 29 Fung MM, Wu G, Estkowski L, Xu D, Hinks S, Mayram E. Realtime B0 inhomogeneity correction in multi-station diffusion imaging (1606). Paper presented at: Proceedings of the 23rd Annual Meeting of the International Society for Magnetic Resonance; May 30–June 5, 2015; Toronto, ON, Canada
  • 30 Morrell G, Spielman D. Dynamic shimming for multi-slice magnetic resonance imaging. Magn Reson Med 1997; 38 (03) 477-483
  • 31 Qiu J, Liu J, Bi Z. et al. Integrated slice-specific dynamic shimming diffusion weighted imaging (DWI) for rectal cancer detection and characterization. Cancer Imaging 2021; 21 (01) 32
  • 32 McElroy S, Winfield JM, Westerland O. et al. Integrated slice-specific dynamic shimming for whole-body diffusion-weighted MR imaging at 1.5 T. Magn Reson Mater Biol Phys Med 2021; 34 (04) 513-521
  • 33 Gruetter R. Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 1993; 29 (06) 804-811
  • 34 Robson MD, Anderson AW, Gore JC. Diffusion-weighted multiple shot echo planar imaging of humans without navigation. Magn Reson Med 1997; 38 (01) 82-88
  • 35 Saritas EU, Cunningham CH, Lee JH, Han ET, Nishimura DG. DWI of the spinal cord with reduced FOV single-shot EPI. Magn Reson Med 2008; 60 (02) 468-473
  • 36 Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42 (05) 952-962
  • 37 Griswold MA, Jakob PM, Heidemann RM. et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47 (06) 1202-1210
  • 38 Chen NK, Guidon A, Chang HC, Song AW. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). Neuroimage 2013; 72: 41-47
  • 39 Holland D, Kuperman JM, Dale AM. Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging. Neuroimage 2010; 50 (01) 175-183
  • 40 Rakow-Penner RA, White NS, Margolis DJA. et al. Prostate diffusion imaging with distortion correction. Magn Reson Imaging 2015; 33 (09) 1178-1181
  • 41 Teruel JR, Fjøsne HE, Østlie A. et al. Inhomogeneous static magnetic field-induced distortion correction applied to diffusion weighted MRI of the breast at 3T. Magn Reson Med 2015; 74 (04) 1138-1144
  • 42 Treiber JM, White NS, Steed TC. et al. Characterization and correction of geometric distortions in 814 diffusion weighted images. PLoS One 2016; 11 (03) e0152472
  • 43 Smith SM, Jenkinson M, Woolrich MW. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23 (Suppl. 01) S208-S219
  • 44 Sagawa H, Fushimi Y, Nakajima S. et al. Deep learning-based noise reduction for fast volume diffusion tensor imaging: assessing the noise reduction effect and reliability of diffusion metrics. Magn Reson Med Sci 2021; 20 (04) 450-456
  • 45 Mani M, Magnotta VA, Jacob M. qModeL: A plug-and-play model-based reconstruction for highly accelerated multi-shot diffusion MRI using learned priors. Magn Reson Med 2021; 86 (02) 835-851
  • 46 Lin YC, Huang HM. Denoising of multi b-value diffusion-weighted MR images using deep image prior. Phys Med Biol 2020; 65 (10) 105003
  • 47 Alsop DC. Phase insensitive preparation of single-shot RARE: application to diffusion imaging in humans. Magn Reson Med 1997; 38 (04) 527-533
  • 48 Zhang Q, Coolen BF, Versluis MJ, Strijkers GJ, Nederveen AJ. Diffusion-prepared stimulated-echo turbo spin echo (DPsti-TSE): an eddy current-insensitive sequence for three-dimensional high-resolution and undistorted diffusion-weighted imaging. NMR Biomed 2017;30(07):
  • 49 Wang X, Zhang Z, Chen Q, Li J, Xian J. Effectiveness of 3 T PROPELLER DUO diffusion-weighted MRI in differentiating sinonasal lymphomas and carcinomas. Clin Radiol 2014; 69 (11) 1149-1156
  • 50 Sakamoto J, Yoshino N, Okochi K. et al. Tissue characterization of head and neck lesions using diffusion-weighted MR imaging with SPLICE. Eur J Radiol 2009; 69 (02) 260-268
  • 51 Cervantes B, Van AT, Weidlich D. et al. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase-corrected diffusion-prepared 3D turbo spin echo. Magn Reson Med 2018; 80 (02) 609-618
  • 52 Granlund KL, Staroswiecki E, Alley MT, Daniel BL, Hargreaves BA. High-resolution, three-dimensional diffusion-weighted breast imaging using DESS. Magn Reson Imaging 2014; 32 (04) 330-341
  • 53 Zhang Z, Meng Q, Chen Y. et al. 3-T imaging of the cranial nerves using three-dimensional reversed FISP with diffusion-weighted MR sequence. J Magn Reson Imaging 2008; 27 (03) 454-458
  • 54 Bieri O, Ganter C, Scheffler K. Quantitative in vivo diffusion imaging of cartilage using double echo steady-state free precession. Magn Reson Med 2012; 68 (03) 720-729
  • 55 Sveinsson B, Rowe OE, Stockmann JP. et al. Feasibility of simultaneous high-resolution anatomical and quantitative magnetic resonance imaging of sciatic nerves in patients with Charcot-Marie-Tooth type 1A (CMT1A) at 7T. Muscle Nerve 2022; 66 (02) 206-211
  • 56 Moran CJ, Cheng JY, Sandino CM. et al. Diffusion-weighted double-echo steady-state with a three-dimensional cones trajectory for non-contrast-enhanced breast MRI. J Magn Reson Imaging 2021; 53 (05) 1594-1605