CC BY 4.0 · Indian J Med Paediatr Oncol 2023; 44(05): 525-533
DOI: 10.1055/s-0043-1776046
Review Article

Flow Cytometric Ploidy Analysis in Acute Lymphoblastic Leukemia and Plasma Cell Myeloma

1   Department of Oncopathology, Cancer Institute (W.I.A.), Adyar, Tamil Nadu, India
› Author Affiliations
Funding None.

Abstract

Identification of underlying cytogenetic (CG) aberrancies plays a significant role in risk stratification of hematological malignancies. These abnormalities can be due to aberrancies that affect the number or structure of chromosomes. Numerical chromosomal abnormalities are called aneuploidies, which result from either gain or loss of whole chromosomes. Ploidy assessment by CG is a laborious and less sensitive technique. With the aid of fluorescent nucleic acid binding dyes, the total DNA content and different phases of the cell cycle specific to any population of interest can be deciphered and analyzed by flow cytometry (FCM). DNA index (DI), a parameter derived by FCM DNA analysis, is equivalent to conventional CG-based ploidy assessment. In this study, the technical aspects and implications of FCM DNA assessment among patients diagnosed with acute lymphoblastic leukemia and plasma cell myeloma are discussed.

Supplementary Material



Publication History

Article published online:
04 November 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Clurman BE, Roberts JM. Cell cycle and cancer. J Natl Cancer Inst 1995; 87 (20) 1499-1501
  • 2 Darzynkiewicz Z, Juan G, Bedner E. Determining cell cycle stages by flow cytometry. Curr Protoc Cell Biol 1999; 1 (01) 8.4.1-8.4.18
  • 3 Darzynkiewicz Z, Huang X, Zhao H. Analysis of cellular DNA content by flow cytometry. Curr Protoc Immunol 2017; 119 (01) 5.7.1-5.7.20
  • 4 Darzynkiewicz Z. Critical aspects in analysis of cellular DNA content. Curr Protoc Cytom 2011; 56 (01) 7.2.1-7.2.8
  • 5 Darzynkiewicz Z. Critical aspects in analysis of cellular DNA content. Curr Protoc Cytom 2010; 52 (01) 7.2.1-7.2.8
  • 6 Poot M. Nucleic acid probes. Curr Protoc Cytom 2003; 26 (01) 4.3.1-4.3.10
  • 7 Vindeløv LL, Christensen IJ. A review of techniques and results obtained in one laboratory by an integrated system of methods designed for routine clinical flow cytometric DNA analysis. Cytometry 1990; 11 (07) 753-770
  • 8 Gupta N, Parihar M, Banerjee S. et al. FxCycle™ based ploidy correlates with cytogenetic ploidy in B-cell acute lymphoblastic leukemia and is able to detect the aneuploid minimal residual disease clone. Cytometry B Clin Cytom 2019; 96 (05) 359-367
  • 9 Bommannan K, Arumugam JR, Koshy T, Radhakrishnan V, Sagar TG, Sundersingh S. Blast size-specific flowcytometric ploidy assessment using FxCycle™ Violet dye and its correlation with conventional cytogenetic ploidy in pediatric precursor B-lineage acute lymphoblastic leukemia patients. Int J Lab Hematol 2021; 43 (04) 760-770
  • 10 Tembhare P, Badrinath Y, Ghogale S. et al. A novel and easy FxCycle™ violet based flow cytometric method for simultaneous assessment of DNA ploidy and six-color immunophenotyping. Cytometry A 2016; 89 (03) 281-291
  • 11 Smets LA, Slater R, van Wering ER. et al. DNA index and %S-phase cells determined in acute lymphoblastic leukemia of children: a report from studies ALL V, ALL VI, and ALL VII (1979-1991) of the Dutch Childhood Leukemia Study Group and The Netherlands Workgroup on Cancer Genetics and Cytogenetics. Med Pediatr Oncol 1995; 25 (06) 437-444
  • 12 Tsurusawa M, Katano N, Fujimoto T. eds. Prognosis and DNA aneuploidy in children with acute lymphoblastic leukemia. In: Acute Leukemias II: Prognostic Factors and Treatment Strategies. Berlin: Springer; 1990: 174-181
  • 13 Rachieru-Sourisseau P, Baranger L, Dastugue N. et al. DNA Index in childhood acute lymphoblastic leukaemia: a karyotypic method to validate the flow cytometric measurement. Int J Lab Hematol 2010; 32 (03) 288-298
  • 14 Mrózek K, Harper DP, Aplan PD. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009; 23 (05) 991-1010 , v
  • 15 Swerdlow S, Campo E, Harris NL. et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Rev. 4th ed.. IARC: Lyon; 2017: 421
  • 16 Haas OA, Borkhardt A. Hyperdiploidy: the longest known, most prevalent, and most enigmatic form of acute lymphoblastic leukemia in children. Leukemia 2022; 36 (12) 2769-2783
  • 17 Look AT, Roberson PK, Williams DL. et al. Prognostic importance of blast cell DNA content in childhood acute lymphoblastic leukemia. Blood 1985; 65 (05) 1079-1086
  • 18 Duque RE, Andreeff M, Braylan RC, Diamond LW, Peiper SC. Consensus review of the clinical utility of DNA flow cytometry in neoplastic hematopathology. Cytometry 1993; 14 (05) 492-496
  • 19 Cervantes E, Enriquez DJ, Vidal J, Retamozo R. Prognostic value of DNA index by flow cytometry for minimal residual disease in childhood b-cell acute lymphoblastic leukemia. Blood 2018; 132: 5287
  • 20 Forestier E, Holmgren G, Roos G. Flow cytometric DNA index and karyotype in childhood lymphoblastic leukemia. Anal Cell Pathol 1998; 17 (03) 145-156
  • 21 Yu C-H, Lin T-K, Jou S-T. et al. MLPA and DNA index improve the molecular diagnosis of childhood B-cell acute lymphoblastic leukemia. Sci Rep 2020; 10 (01) 11501
  • 22 Pérez-Vera P, Frías S, Carnevale A. et al. A strategy to detect chromosomal abnormalities in children with acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2004; 26 (05) 294-300
  • 23 Dastugue N, Suciu S, Plat G. et al. Hyperdiploidy with 58-66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results. Blood 2013; 121 (13) 2415-2423
  • 24 Safavi S, Paulsson K. Near-haploid and low-hypodiploid acute lymphoblastic leukemia: two distinct subtypes with consistently poor prognosis. Blood 2017; 129 (04) 420-423
  • 25 Pui C-H, Rebora P, Schrappe M. et al; Ponte di Legno Childhood ALL Working Group. Outcome of children with hypodiploid acute lymphoblastic leukemia: a retrospective multinational study. J Clin Oncol 2019; 37 (10) 770-779
  • 26 Charrin C, Thomas X, Ffrench M. et al. A report from the LALA-94 and LALA-SA groups on hypodiploidy with 30 to 39 chromosomes and near-triploidy: 2 possible expressions of a sole entity conferring poor prognosis in adult acute lymphoblastic leukemia (ALL). Blood 2004; 104 (08) 2444-2451
  • 27 Ma SK, Chan GC, Wan TS. et al. Near-haploid common acute lymphoblastic leukaemia of childhood with a second hyperdiploid line: a DNA ploidy and fluorescence in-situ hybridization study. Br J Haematol 1998; 103 (03) 750-755
  • 28 Barilà G, Bonaldi L, Grassi A. et al. Identification of the true hyperdiploid multiple myeloma subset by combining conventional karyotyping and FISH analysis. Blood Cancer J 2020; 10 (02) 18
  • 29 Lima M, Teixeira MdosA, Fonseca S. et al. Immunophenotypic aberrations, DNA content, and cell cycle analysis of plasma cells in patients with myeloma and monoclonal gammopathies. Blood Cells Mol Dis 2000; 26 (06) 634-645
  • 30 San Miguel JF, García-Sanz R, González M. et al. A new staging system for multiple myeloma based on the number of S-phase plasma cells. Blood 1995; 85 (02) 448-455
  • 31 Zhan F, Huang Y, Colla S. et al. The molecular classification of multiple myeloma. Blood 2006; 108 (06) 2020-2028
  • 32 Rajan AM, Rajkumar SV. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J 2015; 5 (10) e365-e
  • 33 Debes-Marun CS, Dewald GW, Bryant S. et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 2003; 17 (02) 427-436
  • 34 Fonseca R, Barlogie B, Bataille R. et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004; 64 (04) 1546-1558
  • 35 Sidana S, Jevremovic D, Ketterling RP. et al. Rapid assessment of hyperdiploidy in plasma cell disorders using a novel multi-parametric flow cytometry method. Am J Hematol 2019; 94 (04) 424-430
  • 36 Scarffe JH, Hann IM, Evans DI. et al. Relationship between the pretreatment proliferative activity of marrow blast cells and prognosis of acute lymphoblastic leukaemia of childhood. Br J Cancer 1980; 41 (05) 764-771
  • 37 Pierzyna-Świtała M, Sędek Ł, Kulis J. et al. Multicolor flow cytometry immunophenotyping and characterization of aneuploidy in pediatric B-cell precursor acute lymphoblastic leukemia. Cent Eur J Immunol 2021; 46 (03) 365-374
  • 38 Kumar BK, Bhatia P, Trehan A, Singh AP, Kaul D, Bansal D. DNA ploidy and S-phase fraction analysis in paediatric b-cell acute lymphoblastic leukemia cases: a tertiary care centre experience. Asian Pac J Cancer Prev 2015; 16 (17) 7917-7922
  • 39 Trendle MC, Leong T, Kyle RA. et al. Prognostic significance of the S-phase fraction of light-chain-restricted cytoplasmic immunoglobulin (cIg) positive plasma cells in patients with newly diagnosed multiple myeloma enrolled on Eastern Cooperative Oncology Group treatment trial E9486. Am J Hematol 1999; 61 (04) 232-237
  • 40 Greipp PR, Witzig TE, Gonchoroff NJ. Immunofluorescent plasma cell labeling indices (LI) using a monoclonal antibody (BU-1). Am J Hematol 1985; 20 (03) 289-292
  • 41 Greipp P, Witzig T. Cell Kinetics in Plasma Cell Myeloma. Manual of Clinical Laboratory Immunology. 4th ed.. Washington, DC: American Society of Microbiology; 1992: 96-102
  • 42 Mikhael JR, Dingli D, Roy V. et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines 2013. Mayo Clin Proc 2013; 88 (04) 360-376
  • 43 Kumar SK, Mikhael JR, Buadi FK. et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines. Mayo Clin Proc 2009; 84 (12) 1095-1110
  • 44 Larsen JT, Chee CE, Lust JA, Greipp PR, Rajkumar SV. Reduction in plasma cell proliferation after initial therapy in newly diagnosed multiple myeloma measures treatment response and predicts improved survival. Blood 2011; 118 (10) 2702-2707
  • 45 Orfäo A, García-Sanz R, López-Berges MC. et al. A new method for the analysis of plasma cell DNA content in multiple myeloma samples using a CD38/propidium iodide double staining technique. Cytometry 1994; 17 (04) 332-339
  • 46 Sidiqi MH, Aljama MA, Jevremovic D. et al. Plasma cell proliferative index predicts outcome in immunoglobulin light chain amyloidosis treated with stem cell transplantation. Haematologica 2018; 103 (07) 1229-1234
  • 47 Aljama MA, Sidiqi MH, Lakshman A. et al. Plasma cell proliferative index is an independent predictor of progression in smoldering multiple myeloma. Blood Adv 2018; 2 (22) 3149-3154
  • 48 Paiva B, Vídriales M-B, Montalbán M-Á. et al. Multiparameter flow cytometry evaluation of plasma cell DNA content and proliferation in 595 transplant-eligible patients with myeloma included in the Spanish GEM2000 and GEM2005<65y trials. Am J Pathol 2012; 181 (05) 1870-1878
  • 49 Shankey TV, Rabinovich P, Bagwell B. et al. Guidelines for implementation of clinical DNA cytometry. International Society for Analytical Cytology. Cytometry 1993; 14 (05) 472-477
  • 50 Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol 2004; 281: 301-311
  • 51 Darzynkiewicz Z, Juan G, Srour EF. Differential staining of DNA and RNA. Curr Protoc Cytom 2004; 7 (01) 7.3.1-7.3.16
  • 52 Tembhare P, Badrinath Y, Ghogale S, Subramanian PG. Method for DNA Ploidy analysis along with Immunophenotyping for rare populations in a sample using FxCycle violet. Curr Protoc Cytom 2017; 80 (01) 6.38.1-6.38.15
  • 53 Han-Shu F, Ming-Fei L, Jing S. New methods for cell cycle analysis. Chin J Anal Chem 2019; 47 (09) 1293-1301
  • 54 Tomono A, Itoh T, Yanagita E, Imagawa N, Kakeji Y. Cell cycle kinetic analysis of colorectal neoplasms using a new automated immunohistochemistry-based cell cycle detection method. Medicine (Baltimore) 2015; 94 (04) e501
  • 55 Ismail IH, Hendzel MJ. The γ-H2A.X: is it just a surrogate marker of double-strand breaks or much more?. Environ Mol Mutagen 2008; 49 (01) 73-82
  • 56 Nath J, Johnson KL. A review of fluorescence in situ hybridization (FISH): current status and future prospects. Biotech Histochem 2000; 75 (02) 54-78
  • 57 Sakaue-Sawano A, Kurokawa H, Morimura T. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 2008; 132 (03) 487-498
  • 58 Dubrovsky JG, Ivanov VB. Celebrating 50 years of the cell cycle. Nature 2003; 426 (6968): 759
  • 59 Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell 2016; 165 (04) 780-791
  • 60 Yoo HJ, Park J, Yoon TH. High throughput cell cycle analysis using microfluidic image cytometry (μFIC). Cytometry A 2013; 83 (04) 356-362
  • 61 Tian X, Zhang Y. Research progress of Raman spectroscopy in the diagnosis of early lung cancer. Zhongguo Fei Ai Za Zhi 2018; 21 (07) 560-564
  • 62 de Beer MA, Giepmans BNG. Nanobody-based probes for subcellular protein identification and visualization. Front Cell Neurosci 2020; 14: 573278