Semin Musculoskelet Radiol 2024; 28(01): 014-025
DOI: 10.1055/s-0043-1776432
Review Article

Imaging Biomarkers of Osteoarthritis

1   Department of Radiology, Chobanian & Avedisian Boston University School of Medicine, Boston, Massachusetts
2   Department of Radiology, Universitätsklinikum Erlangen & Friedrich Alexander Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
,
3   Center of Anatomy, and Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
4   Chondrometrics, GmbH, Freilassing, Germany
,
5   Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
,
6   Department of Radiology, New York University Grossmann School of Medicine, New York, New York
,
Mohamed Jarraya
7   Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
,
8   Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
9   Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
,
3   Center of Anatomy, and Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
4   Chondrometrics, GmbH, Freilassing, Germany
,
1   Department of Radiology, Chobanian & Avedisian Boston University School of Medicine, Boston, Massachusetts
10   Department of Radiology, Boston VA Healthcare System, West Roxbury, Massachusetts
› Author Affiliations

Abstract

Currently no disease-modifying osteoarthritis drug has been approved for the treatment of osteoarthritis (OA) that can reverse, hold, or slow the progression of structural damage of OA-affected joints. The reasons for failure are manifold and include the heterogeneity of structural disease of the OA joint at trial inclusion, and the sensitivity of biomarkers used to measure a potential treatment effect.

This article discusses the role and potential of different imaging biomarkers in OA research. We review the current role of radiography, as well as advances in quantitative three-dimensional morphological cartilage assessment and semiquantitative whole-organ assessment of OA. Although magnetic resonance imaging has evolved as the leading imaging method in OA research, recent developments in computed tomography are also discussed briefly. Finally, we address the experience from the Foundation for the National Institutes of Health Biomarker Consortium biomarker qualification study and the future role of artificial intelligence.



Publication History

Article published online:
08 February 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring, MD: Food and Drug Administration; 2016
  • 2 Kraus VB, Nevitt M, Sandell LJ. Summary of the OA biomarkers workshop 2009—biochemical biomarkers: biology, validation, and clinical studies. Osteoarthritis Cartilage 2010; 18 (06) 742-745
  • 3 Hunter DJ, Losina E, Guermazi A, Burstein D, Lassere MN, Kraus V. A pathway and approach to biomarker validation and qualification for osteoarthritis clinical trials. Curr Drug Targets 2010; 11 (05) 536-545
  • 4 Oo WM, Little C, Duong V, Hunter DJ. The development of disease-modifying therapies for osteoarthritis (DMOADs): the evidence to date. Drug Des Devel Ther 2021; 15: 2921-2945
  • 5 Hochberg MC, Guermazi A, Guehring H. et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial. JAMA 2019; 322 (14) 1360-1370
  • 6 Conaghan PG, Bowes MA, Kingsbury SR. et al. Disease-modifying effects of a novel cathepsin K inhibitor in osteoarthritis: a randomized controlled trial. Ann Intern Med 2020; 172 (02) 86-95
  • 7 Thomas D, Burns J, Audette J, Carroll A, Dow-Hygelund C, Hay M. Clinical development success rates 2006–2015: Biotechnology Innovation Organization (BIO). Available at: https://www.bio.org/sites/default/files/legacy/bioorg/docs/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf Accessed September 26, 2023
  • 8 Burstein D, Hunter DJ. “Why aren't we there yet?” Re-examining standard paradigms in imaging of OA: summary of the 2nd annual workshop on imaging based measures of osteoarthritis. Osteoarthritis Cartilage 2009; 17 (05) 571-578
  • 9 Food and Drug Administration. Guidance for industry. clinical development programs for drugs, devices, and biological products intended for the treatment of osteoarthritis (OA). 1999. Available at: https://www.govinfo.gov/app/details/FR-1999-07-15/99-18031
  • 10 Altman R, Asch E, Bloch D. et al; Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Arthritis Rheum 1986; 29 (08) 1039-1049
  • 11 Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage 2007; 15 (Suppl A): A1-A56
  • 12 Altman RD, Hochberg M, Murphy Jr WA, Wolfe F, Lequesne M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage 1995; 3 (Suppl A): 3-70
  • 13 Scott Jr WW, Lethbridge-Cejku M, Reichle R, Wigley FM, Tobin JD, Hochberg MC. Reliability of grading scales for individual radiographic features of osteoarthritis of the knee. The Baltimore longitudinal study of aging atlas of knee osteoarthritis. Invest Radiol 1993; 28 (06) 497-501
  • 14 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16 (04) 494-502
  • 15 Leach RE, Gregg T, Siber FJ. Weight-bearing radiography in osteoarthritis of the knee. Radiology 1970; 97 (02) 265-268
  • 16 Mazzuca SA, Brandt KD, Katz BP. Is conventional radiography suitable for evaluation of a disease-modifying drug in patients with knee osteoarthritis?. Osteoarthritis Cartilage 1997; 5 (04) 217-226
  • 17 Buckland-Wright JC, Wolfe F, Ward RJ, Flowers N, Hayne C. Substantial superiority of semiflexed (MTP) views in knee osteoarthritis: a comparative radiographic study, without fluoroscopy, of standing extended, semiflexed (MTP), and schuss views. J Rheumatol 1999; 26 (12) 2664-2674
  • 18 Mazzuca SA, Brandt KD, Buckland-Wright JC. et al. Field test of the reproducibility of automated measurements of medial tibiofemoral joint space width derived from standardized knee radiographs. J Rheumatol 1999; 26 (06) 1359-1365
  • 19 Peterfy C, Li J, Zaim S. et al. Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol 2003; 32 (03) 128-132
  • 20 Ravaud P, Chastang C, Auleley GR. et al. Assessment of joint space width in patients with osteoarthritis of the knee: a comparison of 4 measuring instruments. J Rheumatol 1996; 23 (10) 1749-1755
  • 21 Duryea J, Zaim S, Genant HK. New radiographic-based surrogate outcome measures for osteoarthritis of the knee. Osteoarthritis Cartilage 2003; 11 (02) 102-110
  • 22 Bruyère O, Henrotin YE, Honoré A. et al. Impact of the joint space width measurement method on the design of knee osteoarthritis studies. Aging Clin Exp Res 2003; 15 (02) 136-141
  • 23 U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research. (CBER), Center for Devices and Radiological Health (CDRH). Osteoarthritis: Structural endpoints for the development of drugs, devices, and biological products for treatment guidance for industry. Available at: https://www.fda.gov/media/71132/download Accessed September 26, 2023
  • 24 Hunter DJ, Altman RD, Cicuttini F. et al. OARSI clinical trials recommendations: knee imaging in clinical trials in osteoarthritis. Osteoarthritis Cartilage 2015; 23 (05) 698-715
  • 25 Crema MD, Nevitt MC, Guermazi A. et al. Progression of cartilage damage and meniscal pathology over 30 months is associated with an increase in radiographic tibiofemoral joint space narrowing in persons with knee OA—the MOST study. Osteoarthritis Cartilage 2014; 22 (10) 1743-1747
  • 26 Guermazi A, Niu J, Hayashi D. et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ 2012; 345: e5339
  • 27 Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 2006; 19 (07) 822-854
  • 28 Eckstein F, Ateshian G, Burgkart R. et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage 2006; 14 (10) 974-983
  • 29 Crema MD, Roemer FW, Marra MD. et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (01) 37-61
  • 30 Eckstein F, Wirth W, Nevitt MC. Recent advances in osteoarthritis imaging—the Osteoarthritis Initiative. Nat Rev Rheumatol 2012; 8 (10) 622-630
  • 31 Buck RJ, Wirth W, Dreher D, Nevitt M, Eckstein F. Frequency and spatial distribution of cartilage thickness change in knee osteoarthritis and its relation to clinical and radiographic covariates—data from the osteoarthritis initiative. Osteoarthritis Cartilage 2013; 21 (01) 102-109
  • 32 Eckstein F, Hochberg MC, Guehring H. et al. Long-term structural and symptomatic effects of intra-articular sprifermin in patients with knee osteoarthritis: 5-year results from the FORWARD study. Ann Rheum Dis 2021; 80 (08) 1062-1069
  • 33 Guehring H, Moreau F, Daelken B. et al. The effects of sprifermin on symptoms and structure in a subgroup at risk of progression in the FORWARD knee osteoarthritis trial. Semin Arthritis Rheum 2021; 51 (02) 450-456
  • 34 Wirth W, Nevitt M, Hellio Le Graverand MP. et al; OA Initiative Investigators Group. Lateral and medial joint space narrowing predict subsequent cartilage loss in the narrowed, but not in the non-narrowed femorotibial compartment—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2014; 22 (01) 63-70
  • 35 Imbert O, Deckx H, Bernard K. et al. The design of a randomized, placebo-controlled, dose-ranging trial to investigate the efficacy and safety of the ADAMTS-5 inhibitor S201086/GLPG1972 in knee osteoarthritis. Osteoarthr Cartil Open 2021; 3 (04) 100209
  • 36 Eckstein F, Maschek S, Culvenor A. et al. Which risk factors determine cartilage thickness and composition change in radiographically normal knees? Data from the Osteoarthritis Initiative. Osteoarthr Cartil Open 2023; 5 (03) 100365
  • 37 Buck RJ, Wyman BT, Le Graverand MP, Hudelmaier M, Wirth W, Eckstein F. 9001140 A investigators. Osteoarthritis may not be a one-way-road of cartilage loss—comparison of spatial patterns of cartilage change between osteoarthritic and healthy knees. Osteoarthritis Cartilage 2010; 18 (03) 329-335
  • 38 Eckstein F, Buck R, Wirth W. Location-independent analysis of structural progression of osteoarthritis—taking it all apart, and putting the puzzle back together makes the difference. Semin Arthritis Rheum 2017; 46 (04) 404-410
  • 39 Buck RJ, Wyman BT, Le Graverand MP, Hudelmaier M, Wirth W, Eckstein F. A9001140 Investigators. Does the use of ordered values of subregional change in cartilage thickness improve the detection of disease progression in longitudinal studies of osteoarthritis?. Arthritis Rheum 2009; 61 (07) 917-924
  • 40 Eckstein F, Le Graverand MP, Charles HC. et al; A9001140, investigators. Clinical, radiographic, molecular and MRI-based predictors of cartilage loss in knee osteoarthritis. Ann Rheum Dis 2011; 70 (07) 1223-1230
  • 41 Eckstein F, Kraines JL, Aydemir A, Wirth W, Maschek S, Hochberg MC. Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of location in the femorotibial joint: post-hoc analysis of a randomised, placebo-controlled phase II clinical trial. Ann Rheum Dis 2020; 79 (04) 525-528
  • 42 Eckstein F, Maschek S, Roemer FW, Duda GN, Sharma L, Wirth W. Cartilage loss in radiographically normal knees depends on radiographic status of the contralateral knee—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2019; 27 (02) 273-277
  • 43 Eckstein F, Kwoh CK, Boudreau RM. et al; OAI investigators. Quantitative MRI measures of cartilage predict knee replacement: a case-control study from the Osteoarthritis Initiative. Ann Rheum Dis 2013; 72 (05) 707-714
  • 44 Bowes MA, Kacena K, Alabas OA. et al. Machine-learning, MRI bone shape and important clinical outcomes in osteoarthritis: data from the Osteoarthritis Initiative. Ann Rheum Dis 2021; 80 (04) 502-508
  • 45 Bloecker K, Wirth W, Guermazi A. et al. Relationship between medial meniscal extrusion and cartilage loss in specific femorotibial subregions: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 2015; 67 (11) 1545-1552
  • 46 Sharma K, Eckstein F, Maschek S, Roth M, Hunter DJ, Wirth W. Association of quantitative measures of medial meniscal extrusion with structural and symptomatic knee osteoarthritis progression—data from the OAI FNIH biomarker study. Osteoarthritis Cartilage 2023; 31 (10) 1396-1404
  • 47 Cai J, Xu J, Wang K. et al. Association between infrapatellar fat pad volume and knee structural changes in patients with knee osteoarthritis. J Rheumatol 2015; 42 (10) 1878-1884
  • 48 Peterfy CG, Guermazi A, Zaim S. et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12 (03) 177-190
  • 49 Kornaat PR, Ceulemans RY, Kroon HM. et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol 2005; 34 (02) 95-102
  • 50 Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 2008; 67 (02) 206-211
  • 51 Hunter DJ, Guermazi A, Lo GH. et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 2011; 19 (08) 990-1002
  • 52 Guermazi A, Roemer FW, Hayashi D. et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis 2011; 70 (05) 805-811
  • 53 Baker K, Grainger A, Niu J. et al. Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis 2010; 69 (10) 1779-1783
  • 54 Rhodes LA, Grainger AJ, Keenan AM, Thomas C, Emery P, Conaghan PG. The validation of simple scoring methods for evaluating compartment-specific synovitis detected by MRI in knee osteoarthritis. Rheumatology (Oxford) 2005; 44 (12) 1569-1573
  • 55 Roemer FW, Frobell R, Lohmander LS, Niu J, Guermazi A. Anterior Cruciate Ligament OsteoArthritis Score (ACLOAS): longitudinal MRI-based whole joint assessment of anterior cruciate ligament injury. Osteoarthritis Cartilage 2014; 22 (05) 668-682
  • 56 Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 2006; 57 (01) 16-23
  • 57 Schreiner MM, Raudner M, Marlovits S. et al. The MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) 2.0 Knee Score and Atlas. Cartilage 2021; 13 (1_Suppl): 571S-587S
  • 58 Roemer FW, Guermazi A, Trattnig S. et al. Whole joint MRI assessment of surgical cartilage repair of the knee: cartilage repair osteoarthritis knee score (CROAKS). Osteoarthritis Cartilage 2014; 22 (06) 779-799
  • 59 Hunter DJ, Zhang W, Conaghan PG. et al. Responsiveness and reliability of MRI in knee osteoarthritis: a meta-analysis of published evidence. Osteoarthritis Cartilage 2011; 19 (05) 589-605
  • 60 Maksymowych WP, Jaremko JL, Pedersen SJ. et al. Comparative validation of the knee inflammation MRI scoring system and the MRI osteoarthritis knee score for semi-quantitative assessment of bone marrow lesions and synovitis-effusion in osteoarthritis: an international multi-reader exercise. Ther Adv Musculoskelet Dis 2023; 15: X231171766
  • 61 Crema MD, Roemer FW, Nevitt MC. et al. Cross-sectional and longitudinal reliability of semiquantitative osteoarthritis assessment at 1.0T extremity MRI: multi-reader data from the MOST study. Osteoarthr Cartil Open 2021; 3 (04) 100214
  • 62 Mobasheri A, Saarakkala S, Finnilä M, Karsdal MA, Bay-Jensen AC, van Spil WE. Recent advances in understanding the phenotypes of osteoarthritis. F1000 Res 2019; 8: 8
  • 63 Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet 2011; 377 (9783): 2115-2126
  • 64 Deveza LA, Melo L, Yamato TP, Mills K, Ravi V, Hunter DJ. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis Cartilage 2017; 25 (12) 1926-1941
  • 65 Roemer FW, Collins JE, Neogi T, Crema MD, Guermazi A. Association of knee OA structural phenotypes to risk for progression: a secondary analysis from the Foundation for National Institutes of Health Osteoarthritis Biomarkers study (FNIH). Osteoarthritis Cartilage 2020; 28 (09) 1220-1228
  • 66 Roemer FW, Collins J, Kwoh CK. et al. MRI-based screening for structural definition of eligibility in clinical DMOAD trials: Rapid OsteoArthritis MRI Eligibility Score (ROAMES). Osteoarthritis Cartilage 2020; 28 (01) 71-81
  • 67 Guermazi A, Roemer FW, Jarraya M, Hayashi D. A call for screening MRI as a tool for osteoarthritis clinical trials. Skeletal Radiol 2023; 52 (11) 2011-2019
  • 68 Roemer FW, Nevitt MC, Felson DT. et al. Predictive validity of within-grade scoring of longitudinal changes of MRI-based cartilage morphology and bone marrow lesion assessment in the tibio-femoral joint—the MOST study. Osteoarthritis Cartilage 2012; 20 (11) 1391-1398
  • 69 Felson DT, Nevitt MC, Yang M. et al. A new approach yields high rates of radiographic progression in knee osteoarthritis. J Rheumatol 2008; 35 (10) 2047-2054
  • 70 Roemer F, Maschek S, Wisser A. et al. Worsening of articular tissue damage as defined by semi-quantitative MRI is associated with concurrent quantitative cartilage loss over 24 months. Cartilage 2023; 14 (01) 39-47
  • 71 Roemer FW, Guermazi A, Javaid MK. et al; MOST Study investigators. Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis 2009; 68 (09) 1461-1465
  • 72 Ross PD, Huang C, Karpf D. et al. Blinded reading of radiographs increases the frequency of errors in vertebral fracture detection. J Bone Miner Res 1996; 11 (11) 1793-1800
  • 73 Bruynesteyn K, Van Der Heijde D, Boers M. et al. Detecting radiological changes in rheumatoid arthritis that are considered important by clinical experts: influence of reading with or without known sequence. J Rheumatol 2002; 29 (11) 2306-2312
  • 74 Felson DT, Nevitt MC. Blinding images to sequence in osteoarthritis: evidence from other diseases. Osteoarthritis Cartilage 2009; 17 (03) 281-283
  • 75 Chan WP, Lang P, Stevens MP. et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 1991; 157 (04) 799-806
  • 76 Roemer FW, Engelke K, Li L, Laredo JD, Guermazi A. MRI underestimates presence and size of knee osteophytes using CT as a reference standard. Osteoarthritis Cartilage 2023; 31 (05) 656-668
  • 77 Haubner M, Eckstein F, Schnier M. et al. A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI. Part 2: Validation using CT arthrography. Magn Reson Imaging 1997; 15 (07) 805-813
  • 78 Vande Berg BC, Lecouvet FE, Poilvache P. et al. Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology 2002; 222 (02) 430-436
  • 79 Vande Berg BC, Lecouvet FE, Poilvache P, Dubuc JE, Maldague B, Malghem J. Anterior cruciate ligament tears and associated meniscal lesions: assessment at dual-detector spiral CT arthrography. Radiology 2002; 223 (02) 403-409
  • 80 Omoumi P, Babel H, Jolles BM, Favre J. Relationships between cartilage thickness and subchondral bone mineral density in non-osteoarthritic and severely osteoarthritic knees: In vivo concomitant 3D analysis using CT arthrography. Osteoarthritis Cartilage 2019; 27 (04) 621-629
  • 81 Kokkonen HT, Suomalainen JS, Joukainen A. et al. In vivo diagnostics of human knee cartilage lesions using delayed CBCT arthrography. J Orthop Res 2014; 32 (03) 403-412
  • 82 Johnson TR, Krauss B, Sedlmair M. et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007; 17 (06) 1510-1517
  • 83 Ea HK, Nguyen C, Bazin D. et al. Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum 2011; 63 (01) 10-18
  • 84 Li M, Qu Y, Song B. Meta-analysis of dual-energy computed tomography virtual non-calcium imaging to detect bone marrow edema. Eur J Radiol 2017; 95: 124-129
  • 85 Segal NA, Li S. WBCT and its evolving role in OA research and clinical practice. Osteoarthr Imaging 2022; 2: 100083
  • 86 Segal NA, Nevitt MC, Lynch JA, Niu J, Torner JC, Guermazi A. Diagnostic performance of 3D standing CT imaging for detection of knee osteoarthritis features. Phys Sportsmed 2015; 43 (03) 213-220
  • 87 Segal NA, Bergin J, Kern A, Findlay C, Anderson DD. Test-retest reliability of tibiofemoral joint space width measurements made using a low-dose standing CT scanner. Skeletal Radiol 2017; 46 (02) 217-222
  • 88 Segal NA, Frick E, Duryea J. et al. Comparison of tibiofemoral joint space width measurements from standing CT and fixed flexion radiography. J Orthop Res 2017; 35 (07) 1388-1395
  • 89 Kothari MD, Rabe KG, Anderson DD. et al; Multicenter Osteoarthritis Study Group. The relationship of three-dimensional joint space width on weight bearing CT with pain and physical function. J Orthop Res 2019 December 16 (Epub ahead of print)
  • 90 Tiulpin A, Thevenot J, Rahtu E, Lehenkari P, Saarakkala S. Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep 2018; 8 (01) 1727
  • 91 Norman B, Pedoia V, Majumdar S. Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 2018; 288 (01) 177-185
  • 92 Liu F, Zhou Z, Samsonov A. et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology 2018; 289 (01) 160-169
  • 93 Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging 2019; 49 (02) 400-410
  • 94 Chang PD, Wong TT, Rasiej MJ. Deep learning for detection of complete anterior cruciate ligament tear. J Digit Imaging 2019; 32 (06) 980-986
  • 95 Brabec JKT, Franc V, Machlica L. On model evaluation under non-constant class imbalance. Comput Sci 2020; 12140: 74-87
  • 96 Liu S, Roemer F, Ge Y. et al. Comparison of evaluation metrics of deep learning for imbalanced imaging data in osteoarthritis studies. Osteoarthritis Cartilage 2023; 31 (09) 1242-1248
  • 97 Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Med Image Comput Comput Assist Interv 2013; 16 (Pt 2): 246-253
  • 98 Ambellan F, Tack A, Ehlke M, Zachow S. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the Osteoarthritis Initiative. Med Image Anal 2019; 52: 109-118
  • 99 Wirth W, Eckstein F, Kemnitz J. et al. Accuracy and longitudinal reproducibility of quantitative femorotibial cartilage measures derived from automated U-Net-based segmentation of two different MRI contrasts: data from the osteoarthritis initiative healthy reference cohort. Magn Reson Mater Biol Phys Med 2021; 34 (03) 337-354
  • 100 Eckstein F, Chaudhari AS, Fuerst D. et al. Detection of differences in longitudinal cartilage thickness loss using a deep-learning automated segmentation algorithm: data from the Foundation for the National Institutes of Health Biomarkers Study of the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 2022; 74 (06) 929-936
  • 101 Eckstein F, Collins JE, Nevitt MC. et al; FNIH OA Biomarkers Consortium. Brief report: Cartilage thickness change as an imaging biomarker of knee osteoarthritis progression: data from the Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol 2015; 67 (12) 3184-3189
  • 102 Roemer FW, Guermazi A, Collins JE. et al. Semi-quantitative MRI biomarkers of knee osteoarthritis progression in the FNIH biomarkers consortium cohort.  Methodologic aspects and definition of change. BMC Musculoskelet Disord 2016; 17 (01) 466
  • 103 Collins JE, Losina E, Nevitt MC. et al. Semiquantitative imaging biomarkers of knee osteoarthritis progression: data from the Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol 2016; 68 (10) 2422-2431
  • 104 Kraus VB, Collins JE, Charles HC. et al; OA Biomarkers Consortium. Predictive validity of radiographic trabecular bone texture in knee osteoarthritis: the Osteoarthritis Research Society International/Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol 2018; 70 (01) 80-87
  • 105 Kraus VB, Collins JE, Hargrove D. et al; OA Biomarkers Consortium. Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis 2017; 76 (01) 186-195
  • 106 Hunter DJ, Deveza LA, Collins JE. et al. Multivariable modeling of biomarker data from the Phase I Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Care Res (Hoboken) 2022; 74 (07) 1142-1153
  • 107 Hunter DJ, Collins JE, Deveza L, Hoffmann SC, Kraus VB. Biomarkers in osteoarthritis: current status and outlook: the FNIH Biomarkers Consortium PROGRESS OA study. Skeletal Radiol 2023; 52 (11) 2323-2339