CC BY 4.0 · Pharmaceutical Fronts 2023; 05(04): e209-e218
DOI: 10.1055/s-0043-1776906
Review Article

A Review of Inline Infrared and Nuclear Magnetic Resonance Applications in Flow Chemistry

Yan Zhang
1   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education and Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People's Republic of China
,
Wei-Ke Su
1   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education and Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People's Republic of China
2   Zhejiang Governor Triangle Biomedical Industrial Technology Research Park, Huzhou, People's Republic of China
› Institutsangaben


Abstract

As a safe and efficient synthesis technique, flow chemistry has recently gained attention in the pharmaceutical, materials, and environmental protection industries. However, researchers always face challenges in handling samples and selecting sufficiently flexible analytical techniques. Generally, real-time process analysis is crucial for monitoring reactions. The combination of flow chemistry with real-time process analysis can be beneficial for studying reaction kinetics and thermodynamics, monitoring, and control of the chemical synthesis processes, reaction optimization of macro and microreactors, and qualitative and quantitative analyses of compounds. Thus far, studies investigating the combination of flow chemistry with inline monitoring have included ultraviolet–infrared spectroscopy, Raman spectroscopy, gas chromatography, mass spectrometry, liquid chromatography, nuclear magnetic resonance (NMR) spectroscopy, and other automated conventional or unconventional methods. This review sheds light on applying inline infrared and inline NMR spectroscopies in flow chemistry.



Publikationsverlauf

Eingereicht: 06. Juli 2023

Angenommen: 26. Oktober 2023

Artikel online veröffentlicht:
01. Dezember 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Reference

  • 1 Brandão P, Pineiro M, Pinhoe Melo TMVD. Flow chemistry: towards a more sustainable heterocyclic synthesis. Eur J Org Chem 2019; 2019 (43) 7188-7217
  • 2 Workman Jr J, Lavine B, Chrisman R, Koch M. Process analytical chemistry. Anal Chem 2011; 83 (12) 4557-4578
  • 3 Morin MA, Zhang WP, Mallik D, Organ MG. Sampling and analysis in flow: the keys to smart, more controllable, and sustainable fine-chemical manufacturing. Angew Chem Int Ed Engl 2021; 60 (38) 20606-20626
  • 4 Lee WG, Zell MT, Ouchi T, Milton MJ. NMR spectroscopy goes mobile: using NMR as process analytical technology at the fume hood. Magn Reson Chem 2020; 58 (12) 1193-1202
  • 5 Fabry DC, Sugiono E, Rueping M. Online monitoring and analysis for autonomous continuous flow self-optimizing reactor systems. React Chem Eng 2016; 1 (02) 129-133
  • 6 Littwin G. Heat transport characteristics of additively manufactured periodic open cellular structures as novel catalyst supports. Chemieingenieurtechnik (Weinh) 2020; 92 (09) 1345
  • 7 Fath V, Kockmann N, Otto J, Röder T. Self-optimising processes and real-time-optimisation of organic syntheses in a microreactor system using Nelder–Mead and design of experiments. React Chem Eng 2020; 5 (07) 1281-1299
  • 8 Fitzpatrick DE, Battilocchio C, Ley SV. A novel internet-based reaction monitoring, control, and autonomous self-optimization platform for chemical synthesis. Org Process Res Dev 2015; 20 (02) 386-394
  • 9 Ingham RJ, Battilocchio C, Hawkins JM, Ley SV. Integration of enabling methods for the automated flow preparation of piperazine-2-carboxamide. Beilstein J Org Chem 2014; 10: 641-652
  • 10 Skilton RA, Parrott AJ, George MW, Poliakoff M, Bourne RA. Real-time feedback control using online attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy for continuous flow optimization and process knowledge. Appl Spectrosc 2013; 67 (10) 1127-1131
  • 11 Moore JS, Jensen KF. Automated multitrajectory method for reaction optimization in a microfluidic system using online IR analysis. Org Process Res Dev 2012; 16 (08) 1409-1415
  • 12 Moore JS, Jensen KF. “Batch” kinetics in flow: online IR analysis and continuous control. Angew Chem Int Ed Engl 2014; 53 (02) 470-473
  • 13 Sagmeister P, Williams JD, Kappe O. The rocky road to a digital lab. Chimia (Aarau) 2023; 77 (05) 300-306
  • 14 Andrews GP, Jones DS, Senta-Loys Z. et al. The development of an inline Raman spectroscopic analysis method as a quality control tool for hot melt extruded ramipril fixed-dose combination products. Int J Pharm 2019; 566: 476-487
  • 15 Ładosz A, Kuhnle C, Jensen KF. Characterization of reaction enthalpy and kinetics in a microscale flow platform. React Chem Eng 2020; 5 (11) 2115-2122
  • 16 Fath V, Lau P, Greve C, Weller P, Kockmann N, Röder T. Simultaneous self-optimisation of yield and purity through a successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. J Flow Chem 2021; 11 (03) 285-302
  • 17 Brächer A, Kreußer LM, Qamar S, Seidel-Morgenstern A, von Harbou E. Application of quantitative inline NMR spectroscopy for investigation of a fixed-bed chromatographic reactor process. Chem Eng J 2018; 336: 518-530
  • 18 Poljanšek I, Šebenik U, Krajnc M. Characterization of phenol-urea-formaldehyde resin by inline FTIR spectroscopy. J Appl Polym Sci 2006; 99 (05) 2016-2028
  • 19 Marchand A, Mishra R, Bernard A, Dumez JN. Online reaction monitoring with fast and flow-compatible diffusion NMR spectroscopy. Chemistry 2022; 28 (52) e202201175
  • 20 Brächer A, Hoch S, Albert K. et al. Thermostatted micro-reactor NMR probe head for monitoring fast reactions. J Magn Reson 2014; 242: 155-161
  • 21 Brächer A, Behrens R, von Harbou E, Hasse H. Application of a new micro-reactor 1 H NMR probe head for quantitative analysis of fast esterification reactions. Chem Eng J 2016; 306: 413-421
  • 22 Schmid E, Rondeau S, Rudszuck T, Nirschl H, Guthausen G. Inline NMR via a dedicated V-shaped sensor. Sensors (Basel) 2023; 23 (05) 2388
  • 23 Cardoza LA, Almeida VK, Carr A, Larive CK, Graham DW. Separations coupled with NMR detection. Trends Analyt Chem 2003; 22 (10) 766-775
  • 24 Fath V, Lau P, Greve C, Kockmann N, Röder T. Efficient kinetic data acquisition and model prediction: continuous flow microreactors, inline fourier transform infrared spectroscopy, and self-modeling curve resolution. Org Process Res Dev 2020; 24 (10) 1955-1968
  • 25 Fath V, Szmais S, Lau P, Kockmann N, Röder T. Model-based scale-up predictions: from micro- to millireactors using inline fourier transform infrared spectroscopy. Org Process Res Dev 2019; 23 (09) 2020-2030
  • 26 Heinze M, Starke S, Händler M. et al. Combination of nuclear magnetic resonance spectroscopy and nonlinear methods to analyze the copolymerization of phosphonic acid derivatives. J Appl Polym Sci 2019; 136: 48256
  • 27 Bazzoni M, Lhoste C, Bonnet J. et al. In-line multidimensional NMR monitoring of photochemical flow reactions. Chemistry 2023; 29 (20) e202203240
  • 28 Scheithauer A, Brächer A, Grützner T. et al. Online 1H NMR spectroscopic study of the reaction kinetics in mixtures of acetaldehyde and water using a new microreactor probe head. Ind Eng Chem Res 2014; 53 (45) 17589-17596
  • 29 Wakabayashi S, Takumi M, Kamio S, Wakioka M, Ohki Y, Nagaki A. Flow-chemistry-enabled synthesis of 5-diethylboryl-2,3′-bipyridine and its self-assembly dynamics. Chemistry 2023; 29 (09) e202202882
  • 30 Bernstein MA, Stefinović M, Sleigh CJ. Optimising reaction performance in the pharmaceutical industry by monitoring with NMR. Magn Reson Chem 2007; 45 (07) 564-571
  • 31 Sagmeister P, Poms J, Williams JD, Kappe CO. Multivariate analysis of inline benchtop NMR data enables rapid optimization of a complex nitration in flow. React Chem Eng 2020; 5 (04) 677-684
  • 32 Rubens M, Van Herck J, Junkers T. Automated polymer synthesis platform for integrated conversion targeting based on inline benchtop nmr. ACS Macro Lett 2019; 8 (11) 1437-1441
  • 33 Van Herck J, Abeysekera I, Buckinx AL. et al. Operator-independent high-throughput polymerization screening based on automated inline NMR and online SEC. Digit Discov 2022; 1 (04) 519-526
  • 34 Lange H, Carter CF, Hopkin MD. et al. A breakthrough method for the accurate addition of reagents in multi-step segmented flow processing. Chem Sci (Camb) 2011; 2 (04) 765-769
  • 35 Qian Z, Baxendale IR, Ley SV. A continuous flow process using a sequence of microreactors with in-line IR analysis for the preparation of N,N-diethyl-4-(3-fluorophenylpiperidin-4-ylidenemethyl)benzamide as a potent and highly selective δ-opioid receptor agonist. Chemistry 2010; 16 (41) 12342-12348
  • 36 Schnoor JK, Schulte LD, Liauw MA. Heat on – calibration of ir spectroscopy at process conditions for continuous esterification. Chemieingenieurtechnik (Weinh) 2020; 92 (10) 1467-1473
  • 37 Wu B, Aspers RLEG, Kentgens APM, Zhao EW. Operando benchtop NMR reveals reaction intermediates and crossover in redox flow batteries. J Magn Reson 2023; 351: 107448
  • 38 Simon K, Sagmeister P, Munday R, Leslie K, Hone CA, Kappe CO. Automated flow and real-time analytics approach for screening functional group tolerance in heterogeneous catalytic reactions. Catal Sci Technol 2022; 12 (06) 1799-1811
  • 39 Van den Broek SAMW, Leliveld JR, Becker R. et al. Continuous flow production of thermally unstable intermediates in a microreactor with inline IR-analysis: controlled vilsmeier–haack formylation of electron-rich arenes. Org Process Res Dev 2012; 16 (05) 934-938
  • 40 Brodmann T, Koos P, Metzger A, Knochel P, Ley SV. Continuous preparation of arylmagnesium reagents in flow with inline IR monitoring. Org Process Res Dev 2011; 16 (05) 1102-1113
  • 41 Menges-Flanagan G, Deitmann E, Gössl L, Hofmann C, Löb P. Scalable continuous synthesis of grignard reagents from in situ-activated magnesium metal. Org Process Res Dev 2020; 24 (02) 315-321
  • 42 Henry C, Bolien D, Ibanescu B. et al. Generation and trapping of ketenes in flow. Eur J Org Chem 2015; 2015 (07) 1491-1499
  • 43 Rueping M, Bootwicha T, Sugiono E. Continuous-flow catalytic asymmetric hydrogenations: reaction optimization using FTIR inline analysis. Beilstein J Org Chem 2012; 8: 300-307
  • 44 Schotten C, Howard JL, Jenkins RL, Codina A, Browne DL. A continuous flow-batch hybrid reactor for commodity chemical synthesis enabled by inline NMR and temperature monitoring. Tetrahedron 2018; 74 (38) 5503-5509
  • 45 Koch C, Posch AE, Goicoechea HC, Herwig C, Lendl B. Multi-analyte quantification in bioprocesses by Fourier-transform-infrared spectroscopy by partial least squares regression and multivariate curve resolution. Anal Chim Acta 2014; 807: 103-110
  • 46 Rao KS, St-Jean F, Kumar A. Quantitation of a ketone enolization and a vinyl sulfonate stereoisomer formation using inline IR spectroscopy and modeling. Org Process Res Dev 2019; 23 (05) 945-951
  • 47 Maiwald M, Fischer HH, Ott M. et al. Quantitative NMR spectroscopy of complex liquid mixtures: methods and results for chemical equilibria in formaldehyde-water-methanol at temperatures up to 383 k. Ind Eng Chem Res 2003; 42 (02) 259-266
  • 48 Tang D, Gong M, Yu J, Guo L, Di J. System-level performance prediction for infrared systems based on energy redistribution in infrared images. IEEE Trans Ind Electron 2022; 69 (02) 2000-2011
  • 49 Svatunek D, Eilenberger G, Denk C. et al. Live monitoring of strain-promoted azide alkyne cycloadditions in complex reaction environments by inline ATR-IR spectroscopy. Chemistry 2020; 26 (44) 9851-9854
  • 50 Zhou G, Emerson K, Majusiak E, Anderson C, Sudah O. Safe scale-up of processes containing hazardous species in the headspace with inline IR. Org Process Res Dev 2012; 16 (02) 204-213
  • 51 Freudenberg J, Binder WH. Chirality control of screw-sense in aib-polymers: synthesis and helicity of amino acid-functionalized polymers. ACS Macro Lett 2020; 9 (05) 686-692