CC BY 4.0 · Glob Med Genet 2023; 10(04): 315-323
DOI: 10.1055/s-0043-1777094
Review Article

The Clinical Significance of MicroRNAs in Colorectal Cancer Signaling Pathways: A Review

Athanasios Michas
1   Department of Oncology, 401 General Military Hospital of Athens, Athens, Greece
,
Vasileios Michas
2   Department of Radiology, Achepa General Hospital Thessaloniki, Thessaloniki, Greece
,
Evangelos Anagnostou
3   Department of Neurosurgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
,
Michail Galanopoulos
1   Department of Oncology, 401 General Military Hospital of Athens, Athens, Greece
,
Maria Tolia
1   Department of Oncology, 401 General Military Hospital of Athens, Athens, Greece
,
Nikolaos Tsoukalas
1   Department of Oncology, 401 General Military Hospital of Athens, Athens, Greece
› Author Affiliations
Funding None.

Abstract

Colorectal carcinoma (colon and rectum) is currently considered among the most prevalent malignancies of Western societies. The pathogenesis and etiological mechanisms underlying colorectal cancer (CRC) development remain complex and heterogeneous. The homeostasis and function of normal human intestinal cells is highly regulated by microRNAs. Therefore, it is not surprising that mutations and inactivation of these molecules appear to be linked with progression of colorectal tumors. Recent studies have reported significant alterations of microRNA expression in adenomas and CRCs compared with adjacent normal tissues. This observed deviation has been proposed to correlate with the progression and survival of disease as well as with choice of optimal treatment and drug resistance. MicroRNAs can adopt either oncogenic or tumor-suppressive roles during regulation of pathways that drive carcinogenesis. Typically, oncogenic microRNAs termed oncomirs, target and silence endogenous tumor-suppressor genes. On the other hand, tumor-suppressive microRNAs are critical in downregulating genes associated with cell growth and malignant capabilities. By extensively evaluating robust studies, we have emphasized and distinguished a discrete set of microRNAs that can modulate tumor progression by silencing specific driver genes crucial in signaling pathways including Wnt/b-catenin, epidermal growth factor receptor, P53, mismatch repair DNA repair, and transforming-growth factor beta.

Ethical Approval and Consent to Participate

This is a literature-based review. This study does not contain any studies or trials performed by any of the authors.


Consent for Publication

Not applicable.


Authors' Contributions

A.M. made the literature research and composed the text. V.M. and E.A. analyzed and edited the supplementary material (image, table). M.G., M.T., and N.T. interpreted the analysis. All authors have read and approved the final manuscript. All authors have made significant work toward completion of the manuscript.




Publication History

Article published online:
22 November 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70 (01) 7-30
  • 2 Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 2017; 18 (01) 197
  • 3 Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev 2007; 17 (01) 45-51
  • 4 Kastrinos F, Samadder NJ, Burt RW. Use of family history and genetic testing to determine risk of colorectal cancer. Gastroenterology 2020; 158 (02) 389-403
  • 5 Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12 (12) 861-874
  • 6 Crick F. Central dogma of molecular biology. Nature 1970; 227 (5258) 561-563
  • 7 Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome. Nat Rev Genet 2010; 11 (08) 559-571
  • 8 Hood L, Rowen L. The Human Genome Project: big science transforms biology and medicine. Genome Med 2013; 5 (09) 79
  • 9 Yao L, Tak YG, Berman BP, Farnham PJ. Functional annotation of colon cancer risk SNPs. Nat Commun 2014; 5: 5114
  • 10 Venkatesh T, Suresh PS, Tsutsumi R. Non-coding RNAs: functions and applications in endocrine-related cancer. Mol Cell Endocrinol 2015; 416: 88-96
  • 11 Yang Y, Du Y, Liu X, Cho WC. Involvement of non-coding RNAs in the signaling pathways of colorectal cancer. Adv Exp Med Biol 2016; 937: 19-51
  • 12 Leonardi T. Insights into the function of non-coding RNAs [Dissertation]. Sidney Sussex College, University of Cambridge; 2016: 255
  • 13 Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10 (03) 155-159
  • 14 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75 (05) 843-854
  • 15 Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15 (06) 321-333
  • 16 Towler BP, Jones CI, Newbury SF. Mechanisms of regulation of mature miRNAs. Biochem Soc Trans 2015; 43 (06) 1208-1214
  • 17 Olena AF, Patton JG. Genomic organization of microRNAs. J Cell Physiol 2010; 222 (03) 540-545
  • 18 Yuan X, Liu C, Yang P. et al. Clustered microRNAs' coordination in regulating protein-protein interaction network. BMC Syst Biol 2009; 3: 65
  • 19 Thomas J, Ohtsuka M, Pichler M, Ling H. MicroRNAs: clinical relevance in colorectal cancer. Int J Mol Sci 2015; 16 (12) 28063-28076
  • 20 Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1 (12) 882-891
  • 21 Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 2006; 66 (15) 7390-7394
  • 22 Schee K, Fodstad Ø, Flatmark K. MicroRNAs as biomarkers in colorectal cancer. Am J Pathol 2010; 177 (04) 1592-1599
  • 23 Lambertz I, Nittner D, Mestdagh P. et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ 2010; 17 (04) 633-641
  • 24 Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6 (04) 259-269
  • 25 Wang J, Du Y, Liu X, Cho WC, Yang Y. MicroRNAs as regulator of signaling networks in metastatic colon cancer. BioMed Res Int 2015; 2015: 823620
  • 26 Rokkas T, Kothonas F, Rokka A, Koukoulis G, Symvoulakis E. The role of circulating microRNAs as novel biomarkers in diagnosing colorectal cancer: a meta-analysis. Eur J Gastroenterol Hepatol 2015; 27 (07) 819-825
  • 27 Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integr Genomics 2022; 22 (06) 1073-1088
  • 28 Balacescu O, Sur D, Cainap C. et al. The impact of miRNA in colorectal cancer progression and its liver metastases. Int J Mol Sci 2018; 19 (12) 3711
  • 29 Nagel R, le Sage C, Diosdado B. et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 2008; 68 (14) 5795-5802
  • 30 Valeri N, Braconi C, Gasparini P. et al. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 2014; 25 (04) 469-483
  • 31 Zhang Y, Guo L, Li Y. et al. MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol Cancer 2018; 17 (01) 1
  • 32 Liu Y, Liu R, Yang F. et al. miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer 2017; 16 (01) 53
  • 33 Wu D, Shi M, Fan XD. Mechanism of miR-21 via Wnt/β-catenin signaling pathway in human A549 lung cancer cells and Lewis lung carcinoma in mice. Asian Pac J Trop Med 2015; 8 (06) 479-484
  • 34 Ji S, Ye G, Zhang J. et al. miR-574-5p negatively regulates Qki6/7 to impact β-catenin/Wnt signalling and the development of colorectal cancer. Gut 2013; 62 (05) 716-726
  • 35 Li T, Lai Q, Wang S. et al. MicroRNA-224 sustains Wnt/β-catenin signaling and promotes aggressive phenotype of colorectal cancer. J Exp Clin Cancer Res 2016; 35: 21
  • 36 Yu Y, Nangia-Makker P, Farhana L, G Rajendra S, Levi E, Majumdar AP. miR-21 and miR-145 cooperation in regulation of colon cancer stem cells. Mol Cancer 2015; 14: 98
  • 37 Luan X-F, Wang L, Gai X-F. The miR-28-5p-CAMTA2 axis regulates colon cancer progression via Wnt/β-catenin signaling. J Cell Biochem 2021; 22 (09) 945-957
  • 38 Tang Q, Zou Z, Zou C. et al. MicroRNA-93 suppress colorectal cancer development via Wnt/β-catenin pathway downregulating. Tumour Biol 2015; 36 (03) 1701-1710
  • 39 Zhang N, Li X, Wu CW. et al. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene 2013; 32 (42) 5078-5088
  • 40 Chen HY, Lang YD, Lin HN. et al. miR-103/107 prolong Wnt/β-catenin signaling and colorectal cancer stemness by targeting Axin2. Sci Rep 2019; 9 (01) 9687
  • 41 Gomez GG, Wykosky J, Zanca C, Furnari FB, Cavenee WK. Therapeutic resistance in cancer: microRNA regulation of EGFR signaling networks. Cancer Biol Med 2013; 10 (04) 192-205
  • 42 Wei S, Hu W, Feng J, Geng Y. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Cell Commun Signal 2022; 20 (01) 150
  • 43 Pagliuca A, Valvo C, Fabrizi E. et al. Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene 2013; 32 (40) 4806-4813
  • 44 Yan X, Chen X, Liang H. et al. miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol Cancer 2014; 13: 220
  • 45 Esquela-Kerscher A, Trang P, Wiggins JF. et al. The Let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008; 7 (06) 759-764
  • 46 Vickers MM, Bar J, Gorn-Hondermann I. et al. Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. Clin Exp Metastasis 2012; 29 (02) 123-132
  • 47 Zhang N, Lu C, Chen L. miR-217 regulates tumor growth and apoptosis by targeting the MAPK signaling pathway in colorectal cancer. Oncol Lett 2016; 12 (06) 4589-4597
  • 48 Huang L, Wen C, Yang X. et al. PEAK1, acting as a tumor promoter in colorectal cancer, is regulated by the EGFR/KRas signaling axis and miR-181d. Cell Death Dis 2018; 9 (03) 271
  • 49 Chen M, Lin M, Wang X. Overexpression of miR-19a inhibits colorectal cancer angiogenesis by suppressing KRAS expression. Oncol Rep 2018; 39 (02) 619-626
  • 50 Kent OA, Mendell JT, Rottapel R. Transcriptional regulation of miR-31 by oncogenic KRAS mediates metastatic phenotypes by repressing RASA1. Mol Cancer Res 2016; 14 (03) 267-277
  • 51 Ota T, Doi K, Fujimoto T. et al. KRAS up-regulates the expression of miR-181a, miR-200c and miR-210 in a three-dimensional-specific manner in DLD-1 colorectal cancer cells. Anticancer Res 2012; 32 (06) 2271-2275
  • 52 Velho S, Oliveira C, Ferreira A. et al. The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 2005; 41 (11) 1649-1654
  • 53 Fang L, Li H, Wang L. et al. MicroRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression. Oncotarget 2014; 5 (10) 2974-2987
  • 54 Danielsen SA, Eide PW, Nesbakken A. et al. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta 2015; 1885 (01) 104-121
  • 55 Guo C, Sah JF, Beard L, Willson JKV, Markowitz SD, Guda K. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 2008; 47 (11) 939-946
  • 56 Fish JE, Santoro MM, Morton SU. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008; 15 (02) 272-284
  • 57 Tu Y, Liu L, Zhao D. et al. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2. Sci Rep 2015; 5: 13827
  • 58 Chen Y, Zhang B, Jin Y, Wu Q, Cao L. MiR-27b targets PI3K p110α to inhibit proliferation and migration in colorectal cancer stem cell. Am J Transl Res 2019; 11 (09) 5988-5997
  • 59 Ozaki T, Nakagawara A. Role of p53 in cell death and human cancers. Cancers (Basel) 2011; 3 (01) 994-1013
  • 60 Kandoth C, McLellan MD, Vandin F. et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502 (7471) 333-339
  • 61 Mozammel N, Amini M, Baradaran B, Mahdavi SZB, Hosseini SS, Mokhtarzadeh A. The function of miR-145 in colorectal cancer progression; an updated review on related signaling pathways. Pathol Res Pract 2023; 242: 154290
  • 62 Rokavec M, Li H, Jiang L, Hermeking H. The p53/microRNA connection in gastrointestinal cancer. Clin Exp Gastroenterol 2014; 7: 395-413
  • 63 Shi L, Jackstadt R, Siemens H, Li H, Kirchner T, Hermeking H. p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res 2014; 74 (02) 532-542
  • 64 Feng Z, Zhang C, Wu R, Hu W. Tumor suppressor p53 meets microRNAs. J Mol Cell Biol 2011; 3 (01) 44-50
  • 65 Hu W, Chan CS, Wu R. et al. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 2010; 38 (05) 689-699
  • 66 Le MTN, Teh C, Shyh-Chang N. et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009; 23 (07) 862-876
  • 67 Kumar M, Lu Z, Takwi AA. et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 2011; 30 (07) 843-853
  • 68 Tay Y, Tan SM, Karreth FA, Lieberman J, Pandolfi PP. Characterization of dual PTEN and p53-targeting microRNAs identifies microRNA-638/Dnm2 as a two-hit oncogenic locus. Cell Rep 2014; 8 (03) 714-722
  • 69 Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 2008; 105 (36) 13421-13426
  • 70 Sachdeva M, Zhu S, Wu F. et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A 2009; 106 (09) 3207-3212
  • 71 Yamakuchi M, Lotterman CD, Bao C. et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 2010; 107 (14) 6334-6339
  • 72 Georges SA, Biery MC, Soo-yeon K. et al. Coordinated regulation of cell-cycle transcripts by p-53 inducible mir-192 and mir-215. Cancer Res 2008; 68: 24
  • 73 Earle JS, Luthra R, Romans A. et al. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn 2010; 12 (04) 433-440
  • 74 Sievänen T, Korhonen TM, Jokela T. et al. Systemic circulating microRNA landscape in Lynch syndrome. Int J Cancer 2023; 152 (05) 932-944
  • 75 Valeri N, Gasparini P, Fabbri M. et al. Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci U S A 2010; 107 (15) 6982-6987
  • 76 Yu Y, Wang Y, Ren X. et al. Context-dependent bidirectional regulation of the MutS homolog 2 by transforming growth factor β contributes to chemoresistance in breast cancer cells. Mol Cancer Res 2010; 8 (12) 1633-1642
  • 77 Valeri N, Gasparini P, Braconi C. et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci U S A 2010; 107 (49) 21098-21103
  • 78 Sarver AL, French AJ, Borralho PM. et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 2009; 9: 401
  • 79 Balaguer F, Moreira L, Lozano JJ. et al. Colorectal cancers with microsatellite instability display unique miRNA profiles. Clin Cancer Res 2011; 17 (19) 6239-6249
  • 80 Principe DR, Doll JA, Bauer J. et al. TGF-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 2014; 106 (02) djt369
  • 81 Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Transforming growth factor-β signaling pathway-associated genes SMAD2 and TGFBR2 are implicated in metabolic syndrome in a Taiwanese population. Sci Rep 2017; 7 (01) 13589
  • 82 Valeri N, Braconi C, Gasparini P. et al. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 2014; 25 (04) 469-483
  • 83 Li J, Liang H, Bai M. et al. miR-135b promotes cancer progression by targeting transforming growth factor beta receptor II (TGFBR2) in colorectal cancer. PLoS One 2015; 10 (06) e0130194
  • 84 Zhang W, Zhang T, Jin R. et al. MicroRNA-301a promotes migration and invasion by targeting TGFBR2 in human colorectal cancer. J Exp Clin Cancer Res 2014; 33 (01) 113
  • 85 Wang M, Li C, Yu B. et al. Overexpressed miR-301a promotes cell proliferation and invasion by targeting RUNX3 in gastric cancer. J Gastroenterol 2013; 48 (09) 1023-1033
  • 86 Yu Y, Kanwar SS, Patel BB. et al. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis 2012; 33 (01) 68-76
  • 87 Cheng D, Zhao S, Tang H. et al. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget 2016; 7 (29) 45199-45213
  • 88 Ling H, Pickard K, Ivan C. et al. The clinical and biological significance of MIR-224 expression in colorectal cancer metastasis. GUT 2016; 65: 6
  • 89 Bu P, Wang L, Chen KY. et al. miR-1269 promotes metastasis and forms a positive feedback loop with TGF-β. Nat Commun 2015; 6: 6879
  • 90 Wu ZMM, You LMM, Zhang YMM. et al. Colorectal cancer screening methods and molecular markers for early detection. Technol Cancer Res Treat 2023; 19: 1533033820980426
  • 91 Yazdani Y, Farazmandfar T, Azadeh H, Zekavatian Z. The prognostic effect of PTEN expression status in colorectal cancer development and evaluation of factors affecting it: miR-21 and promoter methylation. J Biomed Sci 2016; 23: 9
  • 92 Mozammel N, Amini M, Baradaran B, Mahdavi SZB, Hosseini SS, Mokhtarzadeh A. The function of miR-145 in colorectal cancer progression; an updated review on related signaling pathways. Pathol Res Pract 2023; 242: 154290
  • 93 Chen H-Y, Lang Y-D, Lin HN. et al. miR-103/107 prolong Wnt/β-catenin signaling and colorectal cancer stemness by targeting Axin2. Sci Rep 2019; 9 (01) 9687
  • 94 Zhang Y, Guo L, Li Y. et al. MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol Cancer 2018; 17 (01) 1
  • 95 Dokanehiifard S, Yasari A, Najafi H. et al. A novel microRNA located in the TrkC gene regulates the Wnt signaling pathway and is differentially expressed in colorectal cancer specimens. J Biol Chem 2017; 292 (18) 7566-7577
  • 96 Pagliuca A, Valvo C, Fabrizi E. et al. Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene 2013; 32 (40) 4806-4813
  • 97 Sha D, Lee AM, Shi Q. et al. Association study of the Let-7 miRNA-complementary site variant in the 3′ untranslated region of the KRAS gene in stage III colon cancer (NCCTG N0147 clinical trial). Clin Cancer Res 2014; 20 (12) 3319-3327
  • 98 Wu X, Li Z, Huang N, Li X, Chen R. Study of KRAS-related miRNA expression in colorectal cancer. Cancer Manag Res 2022; 14: 2987-3008
  • 99 Ibrahim H, Lim YC. KRAS-associated microRNAs in colorectal cancer. Oncol Rev 2020; 14 (02) 454
  • 100 Zhang C, Liu J, Wang X. et al. MicroRNA-339-5p inhibits colorectal tumorigenesis through regulation of the MDM2/p53 signaling. Oncotarget 2014; 5 (19) 9106-9117
  • 101 Fawzy MS, Ibrahiem AT, AlSel BTA, Alghamdi SA, Toraih EA. Analysis of microRNA-34a expression profile and rs2666433 variant in colorectal cancer: a pilot study. Sci Rep 2020; 10 (01) 16940
  • 102 Liebl MC, Hofmann TG. The role of p53 signaling in colorectal cancer. Cancers 2021; 13: 9
  • 103 Scarpa M, Ruffolo C, Kotsafti A. et al. MLH1 deficiency down-regulates TLR4 expression in sporadic colorectal cancer. Front Mol Biosci 2021; 8: 624873
  • 104 Zhang Y, Yin C, Wei C. et al. Exosomal miR-625-3p secreted by cancer-associated fibroblasts in colorectal cancer promotes EMT and chemotherapeutic resistance by blocking the CELF2/WWOX pathway. Pharmacol Res 2022; 186: 106534
  • 105 Sokolova V, Fiorino A, Zoni E. et al. The effects of miR-20a on p21: two mechanisms blocking growth arrest in TGF-β-responsive colon carcinoma. J Cell Physiol 2015; 230 (12) 3105-3114
  • 106 Xiao Z, Chen S, Feng S. et al. Function and mechanisms of microRNA-20a in colorectal cancer. Exp Ther Med 2020; 19 (03) 1605-1616