RSS-Feed abonnieren
![](/products/assets/desktop/img/oa-logo.png)
DOI: 10.1055/s-0043-1777285
Solvents Influence 1H NMR Chemical Shifts and Complete 1H and 13C NMR Spectral Assignments for Florfenicol
Funding The study is supported by the Zhejiang Science and Technology Plan Project (Grant No. 2021C03161), the Zhejiang Provincial Key R&D Project (Grant No. 2020C03006 & 2019-ZJ-JS-03), and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ18B050003).
![](https://www.thieme-connect.de/media/10.1055-s-00043364/202304/lookinside/thumbnails/10-1055-s-0043-1777285_2300033-1.jpg)
Abstract
Florfenicol (FFC) is an important and widely used veterinary drug, and its structure has been characterized by nuclear magnetic resonance (NMR) spectroscopy. The study aimed to investigate the influences of solvent type, solvent concentration, and temperature on the chemical shifts of the 1H NMR of FFC. The results showed that different types of solvents significantly affected the chemical shifts, especially the chemical shifts of 2-H, 3-H, 5-H, and the active protons. When DMSO-d 6 is used as the solvent, there is no significant difference in the chemical shifts of FFC with a concentration ranging from 20 to 250 mmol/L; however, as the temperature increases, the chemical shifts of the active protons move to a higher field. Besides, the NMR spectroscopic data and structural analysis of FFC were refined by 1H, 13C, distortionless enhancement by polarization transfer-135 (DEPT-135), 1H–1H correlation spectroscopy (1H–1H COSY), phase-sensitive gradient heteronuclear singular quantum correlation (gHSQC), and heteronuclear multiple bond correlation (gHMBC) NMR spectroscopy using DMSO-d 6 as a solvent. The study will help with qualitative and quantitative analysis of FFC in the future.
Keywords
florfenicol - nuclear magnetic resonance - solvents - solvent concentrations - chemical shiftsPublikationsverlauf
Eingereicht: 29. Juni 2023
Angenommen: 31. Oktober 2023
Artikel online veröffentlicht:
01. Dezember 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Blickwede M, Schwarz S. Molecular analysis of florfenicol-resistant Escherichia coli isolates from pigs. J Antimicrob Chemother 2004; 53 (01) 58-64
- 2 Liu Y, Fang Y, Chen Y. et al. Improving intestinal absorption and antibacterial effect of florfenicol via nanocrystallisation technology. J Microencapsul 2022; 39 (7–8): 589-600
- 3 Fan G, Zhang L, Shen Y. et al. Comparative muscle irritation and pharmacokinetics of florfenicol-hydroxypropyl-β-cyclodextrin inclusion complex freeze-dried powder injection and florfenicol commercial injection in beagle dogs. Sci Rep 2019; 9 (01) 16739
- 4 Hassanin O, Abdallah F, Awad A. Effects of florfenicol on the immune responses and the interferon-inducible genes in broiler chickens under the impact of E. coli infection. Vet Res Commun 2014; 38 (01) 51-58
- 5 Yun S, Guo Y, Yang L. et al. Effects of oral florfenicol on intestinal structure, function and microbiota in mice. Arch Microbiol 2020; 202 (01) 161-169
- 6 Wang X, Han C, Cui Y. et al. Florfenicol induces renal toxicity in chicks by promoting oxidative stress and apoptosis. Environ Sci Pollut Res Int 2021; 28 (01) 936-946
- 7 Feng JB, Ruan HT, Chen HG. et al. Pharmacokinetics of florfenicol in the orange-spotted grouper, epinephelus coioides, following oral administration in warm seawater. J World Aquacult Soc 2018; 49 (06) 1058-1067
- 8 Li W, Guo F, Jiang X, Li Y, Li X, Yu Z. Compound ammonium glycyrrhizin protects hepatocytes from injury induced by lipopolysaccharide/florfenicol through oxidative stress and a MAPK pathway. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225: 108585
- 9 Ma RR, Zhan J, Fang WH. et al. Pharmacokinetics and tissue distribution of bronopol in grass carp, Ctenopharyngodon Idella, at 15 and 20°C. Aquacult Res 2020; 51 (02) 648-654
- 10 Osman K, Zolnikov TR, Badr J. et al. Vancomycin and florfenicol resistant Enterococcus faecalis and Enterococcus faecium isolated from human urine in an Egyptian urban-rural community. Acta Trop 2020; 201: 105209
- 11 Qian MR, Wang QY, Yang H. et al. Diffusion-limited PBPK model for predicting pulmonary pharmacokinetics of florfenicol in pig. J Vet Pharmacol Ther 2017; 40 (06) e30-e38
- 12 Li L. Rapid determination of chloramphenicol, thiamphenicol, and florfenicol residues in aquatic products by UPLC-MS/MS method. China Food Safety Magazine 2022; 363 (34) 67-70
- 13 Wang Y, Li X, Wang Y, Schwarz S, Shen J, Xia X. Intracellular accumulation of linezolid and florfenicol in OptrA-Producing Enterococcus faecalis and Staphylococcus aureus. Molecules 2018; 23 (12) 3195
- 14 Yang F, Yang F, Wang GY. et al. Effects of water temperature on tissue depletion of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus gibelio) following multiple oral doses. Aquaculture 2020; 515: 734542
- 15 Li X, Zhang Y, Sun Q. et al. Determination of extractable and non-extractable florfenicol residues as florfenicol amine in eggs by UPLC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39 (09) 1512-1520
- 16 Wang B, Xie X, Zhao X. et al. Development of an accelerated solvent extraction-ultra-performance liquid chromatography-fluorescence detection method for quantitative analysis of thiamphenicol, florfenicol, and florfenicol amine in poultry eggs. Molecules 2019; 24 (09) 1830
- 17 Patyra E, Kwiatek K. HPLC-DAD analysis of florfenicol and thiamphenicol in medicated feedingstuffs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36 (08) 1184-1190
- 18 Chashmniam S, Tafazzoli M. NMR investigation and theoretical calculations of the solvent effect on the conformation of valsartan. J Mol Struct 2017; 1148: 73-80
- 19 Ghiasi R. Exploration of solvent effects on the spectroscopic properties (Ir and C 13 NMR) in the OsCl3(CCH2CMe3)(PH3)2 carbyne complex. J Struct Chem 2018; 59 (05) 1052-1057
- 20 Kaştaş G, Albayrak Kaştaş Ç, Tabak A. Investigation of molecular structure and solvent/temperature effect on tautomerism in (E)-4,6-dibromo-3-methoxy-2-[(p-tolylimino)methyl]phenol, a new thermochromic Schiff base, by using XRD, FT-IR, UV-vis, NMR and DFT methods. Spectrochim Acta A Mol Biomol Spectrosc 2019; 222: 117198
- 21 Kauch M, Pecul M. Spin-spin artificial DNA intercalated with silver cations: theoretical prediction. ChemPhysChem 2012; 13 (05) 1332-1338
- 22 Korac J, Todorovic N, Zakrzewska J. et al. The conformation of epinephrine in polar solvents: an NMR study. Struct Chem 2018; 29 (05) 1533-1541
- 23 Niwayama S, Hiraga Y, Chaki S. 13C NMR spectroscopic studies for the behaviors of carbonyl compounds in various solvents. Tetrahedron Lett 2017; 58 (50) 4677-4681
- 24 Patel AK, Mishra SK, Krishnamurthy K, Suryaprakash N. Retention of strong intramolecular hydrogen bonds in high polarity solvents in binaphthalene-benzamide derivatives: extensive NMR studies. RSC Advances 2019; 9 (56) 32759-32770
- 25 de Melo Sousa CM, Giordani RB, de Almeida WAM. et al. Effect of the solvent on the conformation of monocrotaline as determined by isotropic and anisotropic NMR parameters. Magn Reson Chem 2021; 59 (05) 561-568
- 26 Kim H, Babu CR, Burgess DJ. Quantification of protonation in organic solvents using solution NMR spectroscopy: implication in salt formation. Int J Pharm 2013; 448 (01) 123-131
- 27 Xu L, Huang B, Hou Z, Huang S, Zhao Y. Solvent effects used for optimal simultaneous analysis of amino acids via 19F NMR spectroscopy. Anal Chem 2023; 95 (05) 3012-3018