Semin intervent Radiol 2024; 41(01): 027-047
DOI: 10.1055/s-0043-1777716
Review Article

Chemoembolization Beyond Hepatocellular Carcinoma: What Tumors Can We Treat and When?

Daniel M. DePietro
1   Division of Interventional Radiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
,
Xin Li
2   Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
,
Susan M. Shamimi-Noori
1   Division of Interventional Radiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
› Author Affiliations

Abstract

Liver metastases are the most common malignancy found in the liver and are 20 to 40 times more common than primary hepatic tumors, including hepatocellular carcinoma. Patients with liver metastases often present with advanced disease and are not eligible for curative-intent surgery or ablative techniques. The unique hepatic arterial blood supply of liver metastases allows interventional radiologists to target these tumors with transarterial therapies. Transarterial chemoembolization (TACE) has been studied in the treatment of liver metastases originating from a variety of primary malignancies and has demonstrated benefits in terms of hepatic progression-free survival, overall survival, and symptomatic relief, among other benefits. Depending on the primary tumor from which they originate, liver metastases may have different indications for TACE, may utilize different TACE regimens and techniques, and may result in different post-procedural outcomes. This review offers an overview of TACE techniques and specific considerations in the treatment of liver metastases, provides an in-depth review of TACE in the treatment of liver metastases originating from colorectal cancer, neuroendocrine tumor, and uveal melanoma, which represent some of the many tumors beyond hepatocellular carcinoma that can be treated by TACE, and summarizes data regarding when one should consider TACE in their treatment algorithms.



Publication History

Article published online:
14 March 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol 1954; 30 (05) 969-977
  • 2 Yamada R, Nakatsuka H, Nakamura K. et al. Hepatic artery embolization in 32 patients with unresectable hepatoma. Osaka City Med J 1980; 26 (02) 81-96
  • 3 Llovet JM, Real MI, Montaña X. et al; Barcelona Liver Cancer Group. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 2002; 359 (9319): 1734-1739
  • 4 Lo CM, Ngan H, Tso WK. et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 2002; 35 (05) 1164-1171
  • 5 Reig M, Forner A, Rimola J. et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol 2022; 76 (03) 681-693
  • 6 Craig JR, Peters RL, Edmondson HA. Tumors of the Liver and Intrahepatic Bile Ducts. Armed Forces Institute of Pathology; 1989
  • 7 Specchia ML, Frisicale EM, Carini E. et al. The impact of tumor board on cancer care: evidence from an umbrella review. BMC Health Serv Res 2020; 20 (01) 73
  • 8 de Baere T, Arai Y, Lencioni R. et al. Treatment of liver tumors with lipiodol TACE: technical recommendations from experts opinion. Cardiovasc Intervent Radiol 2016; 39 (03) 334-343
  • 9 de Baere T, Zhang X, Aubert B. et al. Quantification of tumor uptake of iodized oils and emulsions of iodized oils: experimental study. Radiology 1996; 201 (03) 731-735
  • 10 Terayama N, Matsui O, Gabata T. et al. Accumulation of iodized oil within the nonneoplastic liver adjacent to hepatocellular carcinoma via the drainage routes of the tumor after transcatheter arterial embolization. Cardiovasc Intervent Radiol 2001; 24 (06) 383-387
  • 11 Kan Z, Ivancev K, Lunderquist A. Peribiliary plexa – important pathways for shunting of iodized oil and silicon rubber solution from the hepatic artery to the portal vein. An experimental study in rats. Invest Radiol 1994; 29 (07) 671-676
  • 12 Soulen MC, de Baere T. Physics and physiology of transarterial chemoembolization and drug-eluting beads for liver tumors. Image-Guided Interventions in Oncology: An Interdisciplinary Approach. Springer, Cham; 2020: 29-42
  • 13 Raoul JL, Heresbach D, Bretagne JF. et al. Chemoembolization of hepatocellular carcinomas. A study of the biodistribution and pharmacokinetics of doxorubicin. Cancer 1992; 70 (03) 585-590
  • 14 Takayasu K, Shima Y, Muramatsu Y. et al. Hepatocellular carcinoma: treatment with intraarterial iodized oil with and without chemotherapeutic agents. Radiology 1987; 163 (02) 345-351
  • 15 Takayasu K, Arii S, Ikai I. et al; Liver Cancer Study Group of Japan. Overall survival after transarterial lipiodol infusion chemotherapy with or without embolization for unresectable hepatocellular carcinoma: propensity score analysis. AJR Am J Roentgenol 2010; 194 (03) 830-837
  • 16 de Baere T, Dufaux J, Roche A. et al. Circulatory alterations induced by intra-arterial injection of iodized oil and emulsions of iodized oil and doxorubicin: experimental study. Radiology 1995; 194 (01) 165-170
  • 17 Louail B, Sapoval M, Bonneau M, Wasseff M, Senechal Q, Gaux JC. A new porcine sponge material for temporary embolization: an experimental short-term pilot study in swine. Cardiovasc Intervent Radiol 2006; 29 (05) 826-831
  • 18 Brown KT. Fatal pulmonary complications after arterial embolization with 40-120- micro m tris-acryl gelatin microspheres. J Vasc Interv Radiol 2004; 15 (2, Pt 1): 197-200
  • 19 Gonsalves CF, Brown DB. Chemoembolization of hepatic malignancy. Abdom Imaging 2009; 34 (05) 557-565
  • 20 Lucatelli P, Burrel M, Guiu B, de Rubeis G, van Delden O, Helmberger T. CIRSE standards of practice on hepatic transarterial chemoembolisation. Cardiovasc Intervent Radiol 2021; 44 (12) 1851-1867
  • 21 Marelli L, Stigliano R, Triantos C. et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol 2007; 30 (01) 6-25
  • 22 Sahara S, Kawai N, Sato M. et al. Prospective comparison of transcatheter arterial chemoembolization with lipiodol-epirubicin and lipiodol-cisplatin for treatment of recurrent hepatocellular carcinoma. Jpn J Radiol 2010; 28 (05) 362-368
  • 23 Gaba RC. Chemoembolization practice patterns and technical methods among interventional radiologists: results of an online survey. AJR Am J Roentgenol 2012; 198 (03) 692-699
  • 24 Shi M, Lu LG, Fang WQ. et al. Roles played by chemolipiodolization and embolization in chemoembolization for hepatocellular carcinoma: single-blind, randomized trial. J Natl Cancer Inst 2013; 105 (01) 59-68
  • 25 Petruzzi NJ, Frangos AJ, Fenkel JM. et al. Single-center comparison of three chemoembolization regimens for hepatocellular carcinoma. J Vasc Interv Radiol 2013; 24 (02) 266-273
  • 26 Gonsalves CF, Adamo RD, Eschelman DJ. Locoregional therapies for the treatment of uveal melanoma hepatic metastases. Semin Intervent Radiol 2020; 37: 508-517
  • 27 Lewis AL, Gonzalez MV, Lloyd AW. et al. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol 2006; 17 (2 Pt 1): 335-342
  • 28 Carter S, Martin Ii RC. Drug-eluting bead therapy in primary and metastatic disease of the liver. HPB (Oxford) 2009; 11 (07) 541-550
  • 29 Malagari K, Pomoni M, Kelekis A. et al. Prospective randomized comparison of chemoembolization with doxorubicin-eluting beads and bland embolization with BeadBlock for hepatocellular carcinoma. Cardiovasc Intervent Radiol 2010; 33 (03) 541-551
  • 30 Lammer J, Malagari K, Vogl T. et al; PRECISION V Investigators. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 2010; 33 (01) 41-52
  • 31 Brown KT, Do RK, Gonen M. et al. Randomized trial of hepatic artery embolization for hepatocellular carcinoma using doxorubicin-eluting microspheres compared with embolization with microspheres alone. J Clin Oncol 2016; 34 (17) 2046-2053
  • 32 Monier A, Guiu B, Duran R. et al. Liver and biliary damages following transarterial chemoembolization of hepatocellular carcinoma: comparison between drug-eluting beads and lipiodol emulsion. Eur Radiol 2017; 27 (04) 1431-1439
  • 33 Bhagat N, Reyes DK, Lin M. et al. Phase II study of chemoembolization with drug-eluting beads in patients with hepatic neuroendocrine metastases: high incidence of biliary injury. Cardiovasc Intervent Radiol 2013; 36 (02) 449-459
  • 34 Guiu B, Deschamps F, Aho S. et al. Liver/biliary injuries following chemoembolisation of endocrine tumours and hepatocellular carcinoma: lipiodol vs. drug-eluting beads. J Hepatol 2012; 56 (03) 609-617
  • 35 Lewis AL, Hall B. Toward a better understanding of the mechanism of action for intra-arterial delivery of irinotecan from DC Bead(TM) (DEBIRI). Future Oncol 2019; 15 (17) 2053-2068
  • 36 Hu HT, Kim JH, Lee LS. et al. Chemoembolization for hepatocellular carcinoma: multivariate analysis of predicting factors for tumor response and survival in a 362-patient cohort. J Vasc Interv Radiol 2011; 22 (07) 917-923
  • 37 Yamashita Y, Takahashi M, Koga Y. et al. Prognostic factors in the treatment of hepatocellular carcinoma with transcatheter arterial embolization and arterial infusion. Cancer 1991; 67 (02) 385-391
  • 38 Vogl TJ, Naguib NNN, Nour-Eldin NE. et al. Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: Results and prognostic factors governing treatment success. Int J Cancer 2012; 131 (03) 733-740
  • 39 Sato KT, Omary RA, Takehana C. et al. The role of tumor vascularity in predicting survival after yttrium-90 radioembolization for liver metastases. J Vasc Interv Radiol 2009; 20 (12) 1564-1569
  • 40 Danet IM, Semelka RC, Leonardou P. et al. Spectrum of MRI appearances of untreated metastases of the liver. AJR Am J Roentgenol 2003; 181 (03) 809-817
  • 41 Sakamoto I, Aso N, Nagaoki K. et al. Complications associated with transcatheter arterial embolization for hepatic tumors. Radiographics 1998; 18 (03) 605-619
  • 42 Demachi H, Matsui O, Kawamori Y, Ueda K, Takashima T. The protective effect of portoarterial shunts after experimental hepatic artery embolization in rats with liver cirrhosis. Cardiovasc Intervent Radiol 1995; 18 (02) 97-101
  • 43 Yu JS, Kim KW, Jeong MG, Lee DH, Park MS, Yoon SW. Predisposing factors of bile duct injury after transcatheter arterial chemoembolization (TACE) for hepatic malignancy. Cardiovasc Intervent Radiol 2002; 25 (04) 270-274
  • 44 Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 2021; 14 (10) 101174
  • 45 Helling TS, Martin M. Cause of death from liver metastases in colorectal cancer. Ann Surg Oncol 2014; 21 (02) 501-506
  • 46 Choti MA, Sitzmann JV, Tiburi MF. et al. Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg 2002; 235 (06) 759-766
  • 47 Leowattana W, Leowattana P, Leowattana T. Systemic treatment for metastatic colorectal cancer. World J Gastroenterol 2023; 29 (10) 1569-1588
  • 48 Kwan J, Pua U. Review of intra-arterial therapies for colorectal cancer liver metastasis. Cancers (Basel) 2021; 13 (06) 1371
  • 49 Sanz-Altamira PM, Spence LD, Huberman MS. et al. Selective chemoembolization in the management of hepatic metastases in refractory colorectal carcinoma: a phase II trial. Dis Colon Rectum 1997; 40 (07) 770-775
  • 50 Tellez C, Benson III AB, Lyster MT. et al. Phase II trial of chemoembolization for the treatment of metastatic colorectal carcinoma to the liver and review of the literature. Cancer 1998; 82 (07) 1250-1259
  • 51 Lang EK, Brown Jr CL. Colorectal metastases to the liver: selective chemoembolization. Radiology 1993; 189 (02) 417-422
  • 52 Albert M, Kiefer MV, Sun W. et al. Chemoembolization of colorectal liver metastases with cisplatin, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol. Cancer 2011; 117 (02) 343-352
  • 53 Hong K, McBride JD, Georgiades CS. et al. Salvage therapy for liver-dominant colorectal metastatic adenocarcinoma: comparison between transcatheter arterial chemoembolization versus yttrium-90 radioembolization. J Vasc Interv Radiol 2009; 20 (03) 360-367
  • 54 Wasser K, Giebel F, Fischbach R, Tesch H, Landwehr P. [Transarterial chemoembolization of liver metastases of colorectal carcinoma using degradable starch microspheres (Spherex): personal investigations and review of the literature]. Radiologe 2005; 45 (07) 633-643
  • 55 Vogl TJ, Gruber T, Balzer JO, Eichler K, Hammerstingl R, Zangos S. Repeated transarterial chemoembolization in the treatment of liver metastases of colorectal cancer: prospective study. Radiology 2009; 250 (01) 281-289
  • 56 Gruber-Rouh T, Naguib NNN, Eichler K. et al. Transarterial chemoembolization of unresectable systemic chemotherapy-refractory liver metastases from colorectal cancer: long-term results over a 10-year period. Int J Cancer 2014; 134 (05) 1225-1231
  • 57 Vogl TJ, Lahrsow M, Albrecht MH, Hammerstingl R, Thompson ZM, Gruber-Rouh T. Survival of patients with non-resectable, chemotherapy-resistant colorectal cancer liver metastases undergoing conventional lipiodol-based transarterial chemoembolization (cTACE) palliatively versus neoadjuvantly prior to percutaneous thermal ablation. Eur J Radiol 2018; 102: 138-145
  • 58 Yamakado K, Inaba Y, Sato Y. et al. Radiofrequency ablation combined with hepatic arterial chemoembolization using degradable starch microsphere mixed with mitomycin C for the treatment of liver metastasis from colorectal cancer: a prospective multicenter study. Cardiovasc Intervent Radiol 2017; 40 (04) 560-567
  • 59 Wu ZB, Si ZM, Qian S. et al. Percutaneous microwave ablation combined with synchronous transcatheter arterial chemoembolization for the treatment of colorectal liver metastases: results from a follow-up cohort. OncoTargets Ther 2016; 9: 3783-3789
  • 60 Martin II RCG, Scoggins CR, Schreeder M. et al. Randomized controlled trial of irinotecan drug-eluting beads with simultaneous FOLFOX and bevacizumab for patients with unresectable colorectal liver-limited metastasis. Cancer 2015; 121 (20) 3649-3658
  • 61 Martin RCG, Joshi J, Robbins K. et al. Hepatic intra-arterial injection of drug-eluting bead, irinotecan (DEBIRI) in unresectable colorectal liver metastases refractory to systemic chemotherapy: results of multi-institutional study. Ann Surg Oncol 2011; 18 (01) 192-198
  • 62 Aliberti C, Fiorentini G, Muzzio PC. et al. Trans-arterial chemoembolization of metastatic colorectal carcinoma to the liver adopting DC Bead®, drug-eluting bead loaded with irinotecan: results of a phase II clinical study. Anticancer Res 2011; 31 (12) 4581-4587
  • 63 Stutz M, Mamo A, Valenti D. et al. Real-life report on chemoembolization using DEBIRI for liver metastases from colorectal cancer. Gastroenterol Res Pract 2015; 2015: 715102
  • 64 Boeken T, Moussa N, Pernot S. et al. Does bead size affect patient outcome in irinotecan-loaded beads chemoembolization plus systemic chemotherapy regimens for liver-dominant colorectal cancer? Results of an observational study. Cardiovasc Intervent Radiol 2020; 43 (06) 866-874
  • 65 Seidl S, Bischoff P, Schaefer A. et al. TACE in colorectal liver metastases different outcomes in right-sided and left-sided primary tumour location. Integr Cancer Sci Ther 2020;7(01):
  • 66 Young S, Golzarian J. Primary tumor location in colorectal cancer: comparison of right-and left-sided colorectal cancer characteristics for the interventional radiologist. Cardiovasc Intervent Radiol 2018; 41 (12) 1819-1825
  • 67 Iezzi R, Marsico VA, Guerra A. et al. Trans-arterial chemoembolization with irinotecan-loaded drug-eluting beads (DEBIRI) and capecitabine in refractory liver prevalent colorectal metastases: a phase II single-center study. Cardiovasc Intervent Radiol 2015; 38 (06) 1523-1531
  • 68 Pernot S, Pellerin O, Artru P. et al; For FFCD1201-DEBIRI Investigators/Collaborators. Intra-arterial hepatic beads loaded with irinotecan (DEBIRI) with mFOLFOX6 in unresectable liver metastases from colorectal cancer: a Phase 2 study. Br J Cancer 2020; 123 (04) 518-524
  • 69 Fiorentini G, Sarti D, Nardella M. et al. Chemoembolization alone or associated with bevacizumab for therapy of colorectal cancer metastases: preliminary results of a randomized study. In Vivo (Brooklyn) 2020; 34 (02) 683-686
  • 70 Lu H, Zheng C, Fan L, Xiong B. Efficacy and safety of TACE combined with regorafenib versus TACE in the third-line treatment of colorectal liver metastases. J Oncol 2022; 2022: 5366011
  • 71 Bower M, Metzger T, Robbins K. et al. Surgical downstaging and neo-adjuvant therapy in metastatic colorectal carcinoma with irinotecan drug-eluting beads: a multi-institutional study. HPB (Oxford) 2010; 12 (01) 31-36
  • 72 Jones RP, Malik HZ, Fenwick SW. et al. PARAGON II - A single arm multicentre phase II study of neoadjuvant therapy using irinotecan bead in patients with resectable liver metastases from colorectal cancer. Eur J Surg Oncol 2016; 42 (12) 1866-1872
  • 73 Wasan HS, Gibbs P, Sharma NK. et al; FOXFIRE Trial Investigators, SIRFLOX Trial Investigators, FOXFIRE-Global Trial Investigators. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol 2017; 18 (09) 1159-1171
  • 74 van Hazel GA, Heinemann V, Sharma NK. et al. SIRFLOX: randomized phase III trial comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol 2016; 34 (15) 1723-1731
  • 75 Kennedy AS, Ball D, Cohen SJ. et al. Multicenter evaluation of the safety and efficacy of radioembolization in patients with unresectable colorectal liver metastases selected as candidates for (90)Y resin microspheres. J Gastrointest Oncol 2015; 6 (02) 134-142
  • 76 Cosimelli M, Golfieri R, Cagol PP. et al; Italian Society of Locoregional Therapies in Oncology (SITILO). Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer 2010; 103 (03) 324-331
  • 77 Lewandowski RJ, Memon K, Mulcahy MF. et al. Twelve-year experience of radioembolization for colorectal hepatic metastases in 214 patients: survival by era and chemotherapy. Eur J Nucl Med Mol Imaging 2014; 41 (10) 1861-1869
  • 78 Saxena A, Meteling B, Kapoor J, Golani S, Morris DL, Bester L. Is yttrium-90 radioembolization a viable treatment option for unresectable, chemorefractory colorectal cancer liver metastases? A large single-center experience of 302 patients. Ann Surg Oncol 2015; 22 (03) 794-802
  • 79 Mulcahy MF, Lewandowski RJ, Ibrahim SM. et al. Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer 2009; 115 (09) 1849-1858
  • 80 Bester L, Meteling B, Pocock N, Saxena A, Chua TC, Morris DL. Radioembolisation with Yttrium-90 microspheres: an effective treatment modality for unresectable liver metastases. J Med Imaging Radiat Oncol 2013; 57 (01) 72-80
  • 81 Lim L, Gibbs P, Yip D. et al. A prospective evaluation of treatment with Selective Internal Radiation Therapy (SIR-spheres) in patients with unresectable liver metastases from colorectal cancer previously treated with 5-FU based chemotherapy. BMC Cancer 2005; 5: 132
  • 82 Teo JY, Allen Jr JC, Ng DC. et al. A systematic review of contralateral liver lobe hypertrophy after unilobar selective internal radiation therapy with Y90. HPB (Oxford) 2016; 18 (01) 7-12
  • 83 NCCN Clinical Practice Guidelines in Oncology. Colon Cancer NCCN Evidence Blocks Version 3.3023. National Comprehensive Cancer Network. Published 2023. Accessed January 9, 2023 at: https://www.nccn.org/professionals/physician_gls/pdf/colon_blocks.pdf
  • 84 Karanicolas P, Beecroft JR, Cosby R. et al; Gastrointestinal Disease Site Group. Regional therapies for colorectal liver metastases: systematic review and clinical practice guideline. Clin Colorectal Cancer 2021; 20 (01) 20-28
  • 85 Zacharias AJ, Jayakrishnan TT, Rajeev R. et al. Comparative effectiveness of hepatic artery based therapies for unresectable colorectal liver metastases: a meta-analysis. PLoS One 2015; 10 (10) e0139940
  • 86 Shamimi-Noori S, Gonsalves CF, Shaw CM. Metastatic liver disease: indications for locoregional therapy and supporting data. Semin Intervent Radiol 2017; 34: 145-166
  • 87 Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003; 97 (04) 934-959
  • 88 Dasari A, Shen C, Halperin D. et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 2017; 3 (10) 1335-1342
  • 89 Yao JC, Hassan M, Phan A. et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26 (18) 3063-3072
  • 90 Fairweather M, Swanson R, Wang J. et al. Management of neuroendocrine tumor liver metastases: long-term outcomes and prognostic factors from a large prospective database. Ann Surg Oncol 2017; 24 (08) 2319-2325
  • 91 Chamberlain RS, Canes D, Brown KT. et al. Hepatic neuroendocrine metastases: does intervention alter outcomes?. J Am Coll Surg 2000; 190 (04) 432-445
  • 92 Janson ET, Holmberg L, Stridsberg M. et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol 1997; 8 (07) 685-690
  • 93 Rindi G, Mete O, Uccella S. et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol 2022; 33 (01) 115-154
  • 94 Mota JM, Sousa LG, Riechelmann RP. Complications from carcinoid syndrome: review of the current evidence. Ecancermedicalscience 2016; 10: 662
  • 95 Dobson R, Burgess MI, Pritchard DM, Cuthbertson DJ. The clinical presentation and management of carcinoid heart disease. Int J Cardiol 2014; 173 (01) 29-32
  • 96 D'Souza D, Golzarian J, Young S. Interventional liver-directed therapy for neuroendocrine metastases: current status and future directions. Curr Treat Options Oncol 2020; 21 (06) 52
  • 97 Veenendaal LM, Borel Rinkes IH, Lips CJM, van Hillegersberg R. Liver metastases of neuroendocrine tumours; early reduction of tumour load to improve life expectancy. World J Surg Oncol 2006; 4: 35
  • 98 Rinke A, Müller HH, Schade-Brittinger C. et al; PROMID Study Group. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 2009; 27 (28) 4656-4663
  • 99 Caplin ME, Pavel M, Ćwikła JB. et al; CLARINET Investigators. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 2014; 371 (03) 224-233
  • 100 Morgan RE, Pommier SJ, Pommier RF. Expanded criteria for debulking of liver metastasis also apply to pancreatic neuroendocrine tumors. Surgery 2018; 163 (01) 218-225
  • 101 Shah MH, Goldner WS, Benson AB. et al. Neuroendocrine and adrenal tumors, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2021; 19 (07) 839-868
  • 102 Lehrman ED, Fidelman N. Liver-directed therapy for neuroendocrine tumor liver metastases in the era of peptide receptor radionuclide therapy. Semin Intervent Radiol 2020; 37: 499-507
  • 103 Touloupas C, Faron M, Hadoux J. et al. Long term efficacy and assessment of tumor response of transarterial chemoembolization in neuroendocrine liver metastases: a 15-year monocentric experience. Cancers (Basel) 2021; 13 (21) 5366
  • 104 Hajarizadeh H, Ivancev K, Mueller CR, Fletcher WS, Woltering EA. Effective palliative treatment of metastatic carcinoid tumors with intra-arterial chemotherapy/chemoembolization combined with octreotide acetate. Am J Surg 1992; 163 (05) 479-483
  • 105 Mavligit GM, Pollock RE, Evans HL, Wallace S. Durable hepatic tumor regression after arterial chemoembolization-infusion in patients with islet cell carcinoma of the pancreas metastatic to the liver. Cancer 1993; 72 (02) 375-380
  • 106 Therasse E, Breittmayer F, Roche A. et al. Transcatheter chemoembolization of progressive carcinoid liver metastasis. Radiology 1993; 189 (02) 541-547
  • 107 Diamandidou E, Ajani JA, Yang DJ. et al. Two-phase study of hepatic artery vascular occlusion with microencapsulated cisplatin in patients with liver metastases from neuroendocrine tumors. AJR Am J Roentgenol 1998; 170 (02) 339-344
  • 108 Dhir M, Shrestha R, Steel JL. et al. Initial treatment of unresectable neuroendocrine tumor liver metastases with transarterial chemoembolization using streptozotocin: a 20-year experience. Ann Surg Oncol 2017; 24 (02) 450-459
  • 109 Marrache F, Vullierme MP, Roy C. et al. Arterial phase enhancement and body mass index are predictors of response to chemoembolisation for liver metastases of endocrine tumours. Br J Cancer 2007; 96 (01) 49-55
  • 110 Capdevila J, Ducreux M, García Carbonero R. et al. Streptozotocin, 1982-2022: forty years from the FDA's approval to treat pancreatic neuroendocrine tumors. Neuroendocrinology 2022; 112 (12) 1155-1167
  • 111 Vogl TJ, Naguib NNN, Zangos S, Eichler K, Hedayati A, Nour-Eldin NEA. Liver metastases of neuroendocrine carcinomas: interventional treatment via transarterial embolization, chemoembolization and thermal ablation. Eur J Radiol 2009; 72 (03) 517-528
  • 112 Yang TX, Chua TC, Morris DL. Radioembolization and chemoembolization for unresectable neuroendocrine liver metastases - a systematic review. Surg Oncol 2012; 21 (04) 299-308
  • 113 Dermine S, Palmieri LJ, Lavolé J. et al. Non-pharmacological therapeutic options for liver metastases in advanced neuroendocrine tumors. J Clin Med 2019; 8 (11) 1907
  • 114 Onesti JK, Shirley LA, Saunders ND. et al. Elevated alkaline phosphatase prior to transarterial chemoembolization for neuroendocrine tumors predicts worse outcomes. J Gastrointest Surg 2016; 20 (03) 580-586
  • 115 Arrese D, McNally ME, Chokshi R. et al. Extrahepatic disease should not preclude transarterial chemoembolization for metastatic neuroendocrine carcinoma. Ann Surg Oncol 2013; 20 (04) 1114-1120
  • 116 Strosberg JR, Choi J, Cantor AB, Kvols LK. Selective hepatic artery embolization for treatment of patients with metastatic carcinoid and pancreatic endocrine tumors. Cancer Contr 2006; 13 (01) 72-78
  • 117 Schell SR, Camp ER, Caridi JG, Hawkins Jr IF. Hepatic artery embolization for control of symptoms, octreotide requirements, and tumor progression in metastatic carcinoid tumors. J Gastrointest Surg 2002; 6 (05) 664-670
  • 118 Kress O, Wagner HJ, Wied M, Klose KJ, Arnold R, Alfke H. Transarterial chemoembolization of advanced liver metastases of neuroendocrine tumors – a retrospective single-center analysis. Digestion 2003; 68 (2-3): 94-101
  • 119 Roche A, Girish BV, de Baere T. et al. Prognostic factors for chemoembolization in liver metastasis from endocrine tumors. Hepatogastroenterology 2004; 51 (60) 1751-1756
  • 120 Drougas JG, Anthony LB, Blair TK. et al. Hepatic artery chemoembolization for management of patients with advanced metastatic carcinoid tumors. Am J Surg 1998; 175 (05) 408-412
  • 121 Bloomston M, Al-Saif O, Klemanski D. et al. Hepatic artery chemoembolization in 122 patients with metastatic carcinoid tumor: lessons learned. J Gastrointest Surg 2007; 11 (03) 264-271
  • 122 Dominguez S, Denys A, Madeira I. et al. Hepatic arterial chemoembolization with streptozotocin in patients with metastatic digestive endocrine tumours. Eur J Gastroenterol Hepatol 2000; 12 (02) 151-157
  • 123 Pitt SC, Knuth J, Keily JM. et al. Hepatic neuroendocrine metastases: chemo- or bland embolization?. J Gastrointest Surg 2008; 12 (11) 1951-1960
  • 124 Ruutiainen AT, Soulen MC, Tuite CM. et al. Chemoembolization and bland embolization of neuroendocrine tumor metastases to the liver. J Vasc Interv Radiol 2007; 18 (07) 847-855
  • 125 de Baere T, Deschamps F, Teriitheau C. et al. Transarterial chemoembolization of liver metastases from well differentiated gastroenteropancreatic endocrine tumors with doxorubicin-eluting beads: preliminary results. J Vasc Interv Radiol 2008; 19 (06) 855-861
  • 126 Kim YH, Ajani JA, Carrasco CH. et al. Selective hepatic arterial chemoembolization for liver metastases in patients with carcinoid tumor or islet cell carcinoma. Cancer Invest 1999; 17 (07) 474-478
  • 127 Desai DC, O'Dorisio TM, Schirmer WJ. et al. Serum pancreastatin levels predict response to hepatic artery chemoembolization and somatostatin analogue therapy in metastatic neuroendocrine tumors. Regul Pept 2001; 96 (03) 113-117
  • 128 Gupta S, Johnson MM, Murthy R. et al. Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors: variables affecting response rates and survival. Cancer 2005; 104 (08) 1590-1602
  • 129 Makary MS, Kapke J, Yildiz V, Pan X, Dowell JD. Conventional versus drug-eluting bead transarterial chemoembolization for neuroendocrine tumor liver metastases. J Vasc Interv Radiol 2016; 27 (09) 1298-1304
  • 130 Chen JX, Rose S, White SB. et al. Embolotherapy for neuroendocrine tumor liver metastases: prognostic factors for hepatic progression-free survival and overall survival. Cardiovasc Intervent Radiol 2017; 40 (01) 69-80
  • 131 Hur S, Chung JW, Kim HC. et al. Survival outcomes and prognostic factors of transcatheter arterial chemoembolization for hepatic neuroendocrine metastases. J Vasc Interv Radiol 2013; 24 (07) 947-956 , quiz 957
  • 132 Ho AS, Picus J, Darcy MD. et al. Long-term outcome after chemoembolization and embolization of hepatic metastatic lesions from neuroendocrine tumors. AJR Am J Roentgenol 2007; 188 (05) 1201-1207
  • 133 McDermott SM, Saunders ND, Schneider EB. et al. Neutrophil lymphocyte ratio and transarterial chemoembolization in neuroendocrine tumor metastases. J Surg Res 2018; 232: 369-375
  • 134 Dong XD, Carr BI. Hepatic artery chemoembolization for the treatment of liver metastases from neuroendocrine tumors: a long-term follow-up in 123 patients. Med Oncol 2011; 28 (Suppl. 01) S286-S290
  • 135 Luo Y, Pandey A, Ghasabeh MA. et al. Prognostic value of baseline volumetric multiparametric MR imaging in neuroendocrine liver metastases treated with transarterial chemoembolization. Eur Radiol 2019; 29 (10) 5160-5171
  • 136 Maire F, Lombard-Bohas C, O'Toole D. et al. Hepatic arterial embolization versus chemoembolization in the treatment of liver metastases from well-differentiated midgut endocrine tumors: a prospective randomized study. Neuroendocrinology 2012; 96 (04) 294-300
  • 137 Fiore F, Del Prete M, Franco R. et al. Transarterial embolization (TAE) is equally effective and slightly safer than transarterial chemoembolization (TACE) to manage liver metastases in neuroendocrine tumors. Endocrine 2014; 47 (01) 177-182
  • 138 Tai E, Kennedy S, Farrell A, Jaberi A, Kachura J, Beecroft R. Comparison of transarterial bland and chemoembolization for neuroendocrine tumours: a systematic review and meta-analysis. Curr Oncol 2020; 27 (06) e537-e546
  • 139 Chen JX, Wileyto EP, Soulen MC. Randomized Embolization Trial for NeuroEndocrine Tumor Metastases to the Liver (RETNET): study protocol for a randomized controlled trial. Trials 2018; 19 (01) 390
  • 140 Joskin J, de Baere T, Auperin A. et al. Predisposing factors of liver necrosis after transcatheter arterial chemoembolization in liver metastases from neuroendocrine tumor. Cardiovasc Intervent Radiol 2015; 38 (02) 372-380
  • 141 Makary MS, Regalado LE, Alexander J, Sukrithan V, Konda B, Cloyd JM. Clinical outcomes of DEB-TACE in hepatic metastatic neuroendocrine tumors: a 5-year single-institutional experience. Acad Radiol 2023; 30 (Suppl. 01) S117-S123
  • 142 Do Minh D, Chapiro J, Gorodetski B. et al. Intra-arterial therapy of neuroendocrine tumour liver metastases: comparing conventional TACE, drug-eluting beads TACE and yttrium-90 radioembolisation as treatment options using a propensity score analysis model. Eur Radiol 2017; 27 (12) 4995-5005
  • 143 Soulen M, White S, Fidelman N. et al. 03: 27 PM abstract no. 105 randomized embolization trial for NeuroEndocrine tumors (RETNET): first safety report. J Vasc Interv Radiol 2019; 30 (03) S49-S50
  • 144 Gaur SK, Friese JL, Sadow CA. et al. Hepatic arterial chemoembolization using drug-eluting beads in gastrointestinal neuroendocrine tumor metastatic to the liver. Cardiovasc Intervent Radiol 2011; 34 (03) 566-572
  • 145 Sonomura T, Yamada R, Kishi K, Nishida N, Yang RJ, Sato M. Dependency of tissue necrosis on gelatin sponge particle size after canine hepatic artery embolization. Cardiovasc Intervent Radiol 1997; 20 (01) 50-53
  • 146 Ngo L, Elnahla A, Attia AS. et al. Chemoembolization versus radioembolization for neuroendocrine liver metastases: a meta-analysis comparing clinical outcomes. Ann Surg Oncol 2021; 28 (04) 1950-1958
  • 147 Egger ME, Armstrong E, Martin II RCG. et al. Transarterial chemoembolization vs radioembolization for neuroendocrine liver metastases: a multi-institutional analysis. J Am Coll Surg 2020; 230 (04) 363-370
  • 148 Soulen MC, van Houten D, Teitelbaum UR, Damjanov N, Cengel KA, Metz DC. Safety and feasibility of integrating yttrium-90 radioembolization with capecitabine-temozolomide for grade 2 liver-dominant metastatic neuroendocrine tumors. Pancreas 2018; 47 (08) 980-984
  • 149 Currie BM, Nadolski G, Mondschein J. et al. Chronic hepatotoxicity in patients with metastatic neuroendocrine tumor: transarterial chemoembolization versus transarterial radioembolization. J Vasc Interv Radiol 2020; 31 (10) 1627-1635
  • 150 Tomozawa Y, Jahangiri Y, Pathak P. et al. Long-term toxicity after transarterial radioembolization with yttrium-90 using resin microspheres for neuroendocrine tumor liver metastases. J Vasc Interv Radiol 2018; 29 (06) 858-865
  • 151 Su YK, Mackey RV, Riaz A. et al. Long-term hepatotoxicity of yttrium-90 radioembolization as treatment of metastatic neuroendocrine tumor to the liver. J Vasc Interv Radiol 2017; 28 (11) 1520-1526
  • 152 Kim W, Clark TWI, Baum RA, Soulen MC. Risk factors for liver abscess formation after hepatic chemoembolization. J Vasc Interv Radiol 2001; 12 (08) 965-968
  • 153 Cholapranee A, van Houten D, Deitrick G. et al. Risk of liver abscess formation in patients with prior biliary intervention following yttrium-90 radioembolization. Cardiovasc Intervent Radiol 2015; 38 (02) 397-400
  • 154 McLaughlin CC, Wu XC, Jemal A, Martin HJ, Roche LM, Chen VW. Incidence of noncutaneous melanomas in the U.S. Cancer 2005; 103 (05) 1000-1007
  • 155 Triozzi PL, Singh AD. Adjuvant therapy of uveal melanoma: current status. Ocul Oncol Pathol 2014; 1 (01) 54-62
  • 156 Garg G, Finger PT, Kivelä TT. et al; AJCC Ophthalmic Oncology Task Force. Patients presenting with metastases: stage IV uveal melanoma, an international study. Br J Ophthalmol 2022; 106 (04) 510-517
  • 157 Rietschel P, Panageas KS, Hanlon C, Patel A, Abramson DH, Chapman PB. Variates of survival in metastatic uveal melanoma. J Clin Oncol 2005; 23 (31) 8076-8080
  • 158 Diener-West M, Reynolds SM, Agugliaro DJ. et al; Collaborative Ocular Melanoma Study Group. Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. Arch Ophthalmol 2005; 123 (12) 1639-1643
  • 159 Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 2011; 118 (09) 1881-1885
  • 160 Mariani P, Piperno-Neumann S, Servois V. et al. Surgical management of liver metastases from uveal melanoma: 16 years' experience at the Institut Curie. Eur J Surg Oncol 2009; 35 (11) 1192-1197
  • 161 Feldman ED, Pingpank JF, Alexander Jr HR. Regional treatment options for patients with ocular melanoma metastatic to the liver. Ann Surg Oncol 2004; 11 (03) 290-297
  • 162 Amaro A, Gangemi R, Piaggio F. et al. The biology of uveal melanoma. Cancer Metastasis Rev 2017; 36 (01) 109-140
  • 163 Luke JJ, Callahan MK, Postow MA. et al. Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience. Cancer 2013; 119 (20) 3687-3695
  • 164 Carvajal RD, Sosman JA, Quevedo JF. et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA 2014; 311 (23) 2397-2405
  • 165 Seedor RS, Eschelman DJ, Gonsalves CF. et al. An outcome assessment of a single institution's longitudinal experience with uveal melanoma patients with liver metastasis. Cancers (Basel) 2020; 12 (01) 117
  • 166 Rao PK, Barker C, Coit DG. et al; ScM. NCCN Guidelines Insights: Uveal Melanoma, Version 1.2019. J Natl Compr Canc Netw 2020; 18 (02) 120-131
  • 167 Spagnolo F, Caltabiano G, Queirolo P. Uveal melanoma. Cancer Treat Rev 2012; 38 (05) 549-553
  • 168 Sato T. Locoregional management of hepatic metastasis from primary uveal melanoma. Semin Oncol 2010; 37: 127-138
  • 169 Khoja L, Atenafu EG, Suciu S. et al. Meta-analysis in metastatic uveal melanoma to determine progression free and overall survival benchmarks: an international rare cancers initiative (IRCI) ocular melanoma study. Ann Oncol 2019; 30 (08) 1370-1380
  • 170 Moser JC, Pulido JS, Dronca RS, McWilliams RR, Markovic SN, Mansfield AS. The Mayo Clinic experience with the use of kinase inhibitors, ipilimumab, bevacizumab, and local therapies in the treatment of metastatic uveal melanoma. Melanoma Res 2015; 25 (01) 59-63
  • 171 Carrasco CH, Wallace S, Charnsangavej C, Papadopoulos NEJ, Patt YZ, Mavligit GM. Treatment of hepatic metastases in ocular melanoma. Embolization of the hepatic artery with polyvinyl sponge and cisplatin. JAMA 1986; 255 (22) 3152-3154
  • 172 Mavligit GM, Charnsangavej C, Carrasco CH, Patt YZ, Benjamin RS, Wallace S. Regression of ocular melanoma metastatic to the liver after hepatic arterial chemoembolization with cisplatin and polyvinyl sponge. JAMA 1988; 260 (07) 974-976
  • 173 Agarwala SS, Panikkar R, Kirkwood JM. Phase I/II randomized trial of intrahepatic arterial infusion chemotherapy with cisplatin and chemoembolization with cisplatin and polyvinyl sponge in patients with ocular melanoma metastatic to the liver. Melanoma Res 2004; 14 (03) 217-222
  • 174 Vogl T, Eichler K, Zangos S. et al. Preliminary experience with transarterial chemoembolization (TACE) in liver metastases of uveal malignant melanoma: local tumor control and survival. J Cancer Res Clin Oncol 2007; 133 (03) 177-184
  • 175 Sharma KV, Gould JE, Harbour JW. et al. Hepatic arterial chemoembolization for management of metastatic melanoma. AJR Am J Roentgenol 2008; 190 (01) 99-104
  • 176 Dayani PN, Gould JE, Brown DB, Sharma KV, Linette GP, Harbour JW. Hepatic metastasis from uveal melanoma: angiographic pattern predictive of survival after hepatic arterial chemoembolization. Arch Ophthalmol 2009; 127 (05) 628-632
  • 177 Huppert PE, Fierlbeck G, Pereira P. et al. Transarterial chemoembolization of liver metastases in patients with uveal melanoma. Eur J Radiol 2010; 74 (03) e38-e44
  • 178 Schuster R, Lindner M, Wacker F. et al. Transarterial chemoembolization of liver metastases from uveal melanoma after failure of systemic therapy: toxicity and outcome. Melanoma Res 2010; 20 (03) 191-196
  • 179 Gupta S, Bedikian AY, Ahrar J. et al. Hepatic artery chemoembolization in patients with ocular melanoma metastatic to the liver: response, survival, and prognostic factors. Am J Clin Oncol 2010; 33 (05) 474-480
  • 180 Edelhauser G, Schicher N, Berzaczy D. et al. Fotemustine chemoembolization of hepatic metastases from uveal melanoma: a retrospective single-center analysis. AJR Am J Roentgenol 2012; 199 (06) 1387-1392
  • 181 Duran R, Chapiro J, Frangakis C. et al. Uveal melanoma metastatic to the liver: the role of quantitative volumetric contrast-enhanced MR imaging in the assessment of early tumor response after transarterialchemo. Transl Oncol 2014; 7 (04) 447-455
  • 182 Shibayama Y, Namikawa K, Sone M. et al. Efficacy and toxicity of transarterial chemoembolization therapy using cisplatin and gelatin sponge in patients with liver metastases from uveal melanoma in an Asian population. Int J Clin Oncol 2017; 22 (03) 577-584
  • 183 Sato T, Nathan FE, Berd D, Sullivan K, Mastrangelo MJ. Lack of effect from chemoembolization for liver metastasis from uveal melanoma. Proc Am Soc Clin Oncol 1995; 14: 415
  • 184 Patel K, Sullivan K, Berd D. et al. Chemoembolization of the hepatic artery with BCNU for metastatic uveal melanoma: results of a phase II study. Melanoma Res 2005; 15 (04) 297-304
  • 185 Gonsalves CF, Eschelman DJ, Thornburg B, Frangos A, Sato T. Uveal melanoma metastatic to the liver: Chemoembolization with 1,3-bis-(2-chloroethyl)-1-nitrosourea. AJR Am J Roentgenol 2015; 205 (02) 429-433
  • 186 Fiorentini G, Aliberti C, del Conte A. et al. Intra-arterial hepatic chemoembolization (TACE) of liver metastases from ocular melanoma with slow-release irinotecan-eluting beads. Early results of a phase II clinical study. In Vivo (Brooklyn) 2009;23(01):
  • 187 Venturini M, Pilla L, Agostini G. et al. Transarterial chemoembolization with drug-eluting beads preloaded with irinotecan as a first-line approach in uveal melanoma liver metastases: tumor response and predictive value of diffusion-weighted MR imaging in five patients. J Vasc Interv Radiol 2012; 23 (07) 937-941
  • 188 Valpione S, Aliberti C, Parrozzani R. et al. A retrospective analysis of 141 patients with liver metastases from uveal melanoma: a two-cohort study comparing transarterial chemoembolization with CPT-11 charged microbeads and historical treatments. Melanoma Res 2015; 25 (02) 164-168
  • 189 Carling U, Dorenberg EJ, Haugvik SP. et al. Transarterial chemoembolization of liver metastases from uveal melanoma using irinotecan-loaded beads: treatment response and complications. Cardiovasc Intervent Radiol 2015; 38 (06) 1532-1541
  • 190 Brown RE, Gibler KM, Metzger T. et al. Imaged guided transarterial chemoembolization with drug-eluting beads loaded with doxorubicin (DEBDOX) for hepatic metastases from melanoma: early outcomes from a multi-institutional registry. Am Surg 2011; 77 (01) 93-98
  • 191 Tan AL, Eschelman DJ, Gonsalves CF, Frangos A, Sato T. Treatment of bulky uveal melanoma (UN) hepatic metastases with doxorubicin eluting beads (DEBDOX) followed by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) TACE: an initial experience. J Vasc Interv Radiol 2014; 25 (03) DOI: 10.1016/j.jvir.2013.12.107.
  • 192 Bedikian AY, Legha SS, Mavligit G. et al. Treatment of uveal melanoma metastatic to the liver: a review of the M. D. Anderson Cancer Center experience and prognostic factors. Cancer 1995; 76 (09) 1665-1670
  • 193 Gonsalves CF, Eschelman DJ, Sullivan KL, Anne PR, Doyle L, Sato T. Radioembolization as salvage therapy for hepatic metastasis of uveal melanoma: a single-institution experience. AJR Am J Roentgenol 2011; 196 (02) 468-473
  • 194 Schelhorn J, Richly H, Ruhlmann M, Lauenstein TC, Theysohn JM. A single-center experience in radioembolization as salvage therapy of hepatic metastases of uveal melanoma. Acta Radiol Open 2015; 4 (04) 2047981615570417
  • 195 Eldredge-Hindy H, Ohri N, Anne PR. et al. Yttrium-90 microsphere brachytherapy for liver metastases from uveal melanoma: clinical outcomes and the predictive value of fluorodeoxyglucose positron emission tomography. Am J Clin Oncol 2016; 39 (02) 189-195
  • 196 Klingenstein A, Haug AR, Zech CJ, Schaller UC. Radioembolization as locoregional therapy of hepatic metastases in uveal melanoma patients. Cardiovasc Intervent Radiol 2013; 36 (01) 158-165
  • 197 Gonsalves CF, Eschelman DJ, Adamo RD. et al. A prospective phase II trial of radioembolization for treatment of uveal melanoma hepatic metastasis. Radiology 2019; 293 (01) 223-231
  • 198 Peuker CAA, De Bucourt M, Gebauer B. et al. First interim analysis of the SirTac trial: a randomized phase II study of SIRT and DSM-TACE in patients with liver metastases from uveal melanoma. J Clin Oncol 2022; 40 (16, Suppl) DOI: 10.1200/jco.2022.40.16_suppl.9511.
  • 199 Yamamoto A, Chervoneva I, Sullivan KL. et al. High-dose immunoembolization: survival benefit in patients with hepatic metastases from uveal melanoma. Radiology 2009; 252 (01) 290-298
  • 200 Chang J, Charalel R, Noda C. et al. Liver-dominant breast cancer metastasis: a comparative outcomes study of chemoembolization versus radioembolization. Anticancer Res 2018; 38 (05) 3063-3068
  • 201 Mouli SK, Gupta R, Sheth N, Gordon AC, Lewandowski RJ. Locoregional therapies for the treatment of hepatic metastases from breast and gynecologic cancers. Semin Intervent Radiol 2018; 35: 29-34
  • 202 Bibok A, Mhaskar R, Jain R. et al. Role of radioembolization in the management of liver-dominant metastatic renal cell carcinoma: a single-center, retrospective study. Cardiovasc Intervent Radiol 2021; 44 (11) 1755-1762
  • 203 Nabil M, Gruber T, Yakoub D, Ackermann H, Zangos S, Vogl TJ. Repetitive transarterial chemoembolization (TACE) of liver metastases from renal cell carcinoma: local control and survival results. Eur Radiol 2008; 18 (07) 1456-1463
  • 204 Avritscher R, Gupta S. Gastrointestinal stromal tumor: role of interventional radiology in diagnosis and treatment. Hematol Oncol Clin North Am 2009; 23 (01) 129-137 , ix