RSS-Feed abonnieren
DOI: 10.1055/s-0043-1778072
Computational Fluid Dynamics and Its Potential Applications for the ENT Clinician
Funding K.Z. was funded by NIH NIDCD R01DC020302. The funder has no role in designing and conducting of the study; collection, management, analysis, and interpretation of the data; and decision to submit the manuscript for publication.Abstract
This article is an examination of computational fluid dynamics in the field of otolaryngology, specifically rhinology. The historical development and subsequent application of computational fluid dynamics continues to enhance our understanding of various sinonasal conditions and surgical planning in the field today. This article aims to provide a description of computational fluid dynamics, the methods for its application, and the clinical relevance of its results. Consideration of recent research and data in computational fluid dynamics demonstrates its use in nonhistological disease pathology exploration, accompanied by a large potential for surgical guidance applications. Additionally, this article defines in lay terms the variables analyzed in the computational fluid dynamic process, including velocity, wall shear stress, area, resistance, and heat flux.
* These authors contributed equally to the article.
Publikationsverlauf
Artikel online veröffentlicht:
15. Januar 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Girardin M, Bilgen E, Arbour P. Experimental study of velocity fields in a human nasal fossa by laser anemometry. Ann Otol Rhinol Laryngol 1983; 92 (3, Pt 1): 231-236
- 2 Hornung DE, Leopold DA, Youngentob SL. et al. Airflow patterns in a human nasal model. Arch Otolaryngol Head Neck Surg 1987; 113 (02) 169-172
- 3 Hahn I, Scherer PW, Mozell MM. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol 1993; 75 (05) 2273-2287
- 4 Keyhani K, Scherer PW, Mozell MM. Numerical simulation of airflow in the human nasal cavity. J Biomech Eng 1995; 117 (04) 429-441
- 5 Zhao K, Scherer PW, Hajiloo SA, Dalton P. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem Senses 2004; 29 (05) 365-379
- 6 Schroter RC, Sudlow MF. Flow patterns in models of the human bronchial airways. Respir Physiol 1969; 7 (03) 341-355
- 7 Koizumi Y, Shoji M, Monde M, Takata Y, Nagai N. Minimum heat flux-film boiling. In: Boiling: Research and Advances. Philadelphia, PA:: Elsevier;; 2017: 369-410
- 8 Doorly DJ, Taylor DJ, Schroter RC. Mechanics of airflow in the human nasal airways. Respir Physiol Neurobiol 2008; 163 (1–3): 100-110
- 9 Li C, Jiang J, Dong H, Zhao K. Computational modeling and validation of human nasal airflow under various breathing conditions. J Biomech 2017; 64 (07) 59-68
- 10 Subramaniam Ravi P, Richardson Regina B, Morgan Kevin T, Kimbell Julia S, Guilmette Raymond A. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal Toxicol 1998; 10 (02) 91-120
- 11 Zhao K, Dalton P. The way the wind blows: implications of modeling nasal airflow. Curr Allergy Asthma Rep 2007; 7 (02) 117-125
- 12 Zhao K, Jiang J, Blacker K. et al. Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 2014; 124 (03) 589-595
- 13 Schroeter JD, Kimbell JS, Asgharian B. Analysis of particle deposition in the turbinate and olfactory regions using a human nasal computational fluid dynamics model. J Aerosol Med 2006; 19 (03) 301-313
- 14 Kurtz DB, Zhao K, Hornung DE, Scherer P. Experimental and numerical determination of odorant solubility in nasal and olfactory mucosa. Chem Senses 2004; 29 (09) 763-773
- 15 Zhao K, Dalton P, Yang GC, Scherer PW. Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose. Chem Senses 2006; 31 (02) 107-118
- 16 Bailie N, Hanna B, Watterson J, Gallagher G. An overview of numerical modelling of nasal airflow. Rhinology 2006; 44 (01) 53-57
- 17 Zhao K, Jiang J. What is normal nasal airflow? A computational study of 22 healthy adults. Int Forum Allergy Rhinol 2014; 4 (06) 435-446
- 18 Ayodele OJ, Oluwatosin AE, Taiwo OC, Dare AA. Computational fluid dynamics modeling in respiratory airways obstruction: current applications and prospects. Int J Biomed Sci Eng. 2021; 9 (02) 16
- 19 Zhao K, Blacker K, Luo Y, Bryant B, Jiang J. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. PLoS One 2011; 6 (10) e24618
- 20 Cherobin GB, Voegels RL, Pinna FR, Gebrim EMMS, Bailey RS, Garcia GJM. Rhinomanometry versus computational fluid dynamics: correlated, but different techniques. Am J Rhinol Allergy 2021; 35 (02) 245-255
- 21 Croce C, Fodil R, Durand M. et al. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann Biomed Eng 2006; 34 (06) 997-1007
- 22 Engelhardt L, Röhm M, Mavoungou C, Schindowski K, Schafmeister A, Simon U. First steps to develop and validate a CFPD model in order to support the design of nose-to-brain delivered biopharmaceuticals. Pharm Res 2016; 33 (06) 1337-1350
- 23 Grützenmacher S, Lang C, Mlynski G. The combination of acoustic rhinometry, rhinoresistometry and flow simulation in noses before and after turbinate surgery: a model study. ORL J Otorhinolaryngol Relat Spec 2003; 65 (06) 341-347
- 24 Hebbink RHJ, Wessels BJ, Hagmeijer R, Jain K. Computational analysis of human upper airway aerodynamics. Med Biol Eng Comput 2023; 61 (02) 541-553
- 25 Lu J, Han D, Zhang L. Accuracy evaluation of a numerical simulation model of nasal airflow. Acta Otolaryngol 2014; 134 (05) 513-519
- 26 Müller-Wittig W, Mlynsji G, Weinhold I, Bockholt U, Voss G. Nasal airflow diagnosis–comparison of experimental studies and computer simulations. Stud Health Technol Inform 2002; 85: 311-317
- 27 Mylavarapu G, Murugappan S, Mihaescu M, Kalra M, Khosla S, Gutmark E. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. J Biomech 2009; 42 (10) 1553-1559
- 28 Na Y, Chung KS, Chung SK, Kim SK. Effects of single-sided inferior turbinectomy on nasal function and airflow characteristics. Respir Physiol Neurobiol 2012; 180 (2–3): 289-297
- 29 Ormiskangas J, Valtonen O, Kivekäs I. et al. Assessment of PIV performance in validating CFD models from nasal cavity CBCT scans. Respir Physiol Neurobiol 2020; 282: 103508
- 30 Phuong NL, Quang TV, Khoa ND, Kim JW, Ito K. CFD analysis of the flow structure in a monkey upper airway validated by PIV experiments. Respir Physiol Neurobiol 2020; 271: 103304
- 31 Reid AWN, Chen DH, Wen H. et al. The virtual nose: assessment of static nasal airway obstruction using computational simulations and 3D-printed models. Facial Plast Surg Aesthet Med 2022; 24 (01) 20-26
- 32 Weinhold I, Mlynski G. Numerical simulation of airflow in the human nose. Eur Arch Otorhinolaryngol 2004; 261 (08) 452-455
- 33 Xu X, Wu J, Weng W, Fu M. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Biomech Model Mechanobiol 2020; 19 (05) 1679-1695
- 34 Xiong GX, Zhan JM, Jiang HY, Li JF, Rong LW, Xu G. Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am J Rhinol 2008; 22 (05) 477-482
- 35 Inthavong K, Ma J, Shang Y. et al. Geometry and airflow dynamics analysis in the nasal cavity during inhalation. Clin Biomech (Bristol, Avon) 2019; 66: 97-106
- 36 Patel RG, Garcia GJ, Frank-Ito DO, Kimbell JS, Rhee JS. Simulating the nasal cycle with computational fluid dynamics. Otolaryngol Head Neck Surg 2015; 152 (02) 353-360
- 37 Russel SM, Frank-Ito DO. Gender differences in nasal anatomy and function among Caucasians. Facial Plast Surg Aesthet Med 2023; 25 (02) 145-152
- 38 Shah R, Frank-Ito DO. The role of normal nasal morphological variations from race and gender differences on respiratory physiology. Respir Physiol Neurobiol 2022; 297: 103823
- 39 Taghiloo H, Halimi Z. The frequencies of different types of nasal septum deviation and their effect on increasing the thickness of maxillary sinus mucosa. J Dent Res Dent Clin Dent Prospect 2019; 13 (03) 208-214
- 40 Lepley TJ, Frusciante RP, Malik J, Farag A, Otto BA, Zhao K. Otolaryngologists' radiological assessment of nasal septum deviation symptomatology. Eur Arch Otorhinolaryngol 2023; 280 (01) 235-240
- 41 Malik J, Spector BM, Wu Z. et al. Evidence of nasal cooling and sensory impairments driving patient symptoms with septal deviation. Laryngoscope 2022; 132 (03) 509-517
- 42 Garcia GJ, Rhee JS, Senior BA, Kimbell JS. Septal deviation and nasal resistance: an investigation using virtual surgery and computational fluid dynamics. Am J Rhinol Allergy 2010; 24 (01) e46-e53
- 43 Liu T, Han D, Wang J. et al. Effects of septal deviation on the airflow characteristics: using computational fluid dynamics models. Acta Otolaryngol 2012; 132 (03) 290-298
- 44 Lepley TJ, Wu Z, Root ZT. et al. Can oxymetazoline simulate the outcomes of septoplasty and inferior turbinate reduction surgery?. Int Forum Allergy Rhinol 2023; 13 (05) 961-963
- 45 Lee TS, Goyal P, Li C, Zhao K. Computational fluid dynamics to evaluate the effectiveness of inferior turbinate reduction techniques to improve nasal airflow. JAMA Facial Plast Surg 2018; 20 (04) 263-270
- 46 Kimbell JS, Garcia GJ, Frank DO, Cannon DE, Pawar SS, Rhee JS. Computed nasal resistance compared with patient-reported symptoms in surgically treated nasal airway passages: a preliminary report. Am J Rhinol Allergy 2012; 26 (03) e94-e98
- 47 Cannon DE, Frank DO, Kimbell JS, Poetker DM, Rhee JS. Modeling nasal physiology changes due to septal perforations. Otolaryngol Head Neck Surg 2013; 148 (03) 513-518
- 48 Farzal Z, Del Signore AG, Zanation AM. et al. A computational fluid dynamics analysis of the effects of size and shape of anterior nasal septal perforations. Rhinology 2019; 57 (02) 153-159
- 49 Li C, Maza G, Farag AA. et al. Asymptomatic vs symptomatic septal perforations: a computational fluid dynamics examination. Int Forum Allergy Rhinol 2019; 9 (08) 883-890
- 50 Li L, Han D, Zhang L. et al. Impact of nasal septal perforations of varying sizes and locations on the warming function of the nasal cavity: a computational fluid-dynamics analysis of 5 cases. Ear Nose Throat J 2016; 95 (09) E9-E14
- 51 Nomura T, Ushio M, Kondo K. et al Effects of nasal septum perforation repair surgery on three-dimensional airflow: an evaluation using computational fluid dynamics. European Archives of Oto-Rhino-Laryngology 2015; Nov; 272: 3327-3333
- 52 Otto BA, Li C, Farag AA. et al. Computational fluid dynamics evaluation of posterior septectomy as a viable treatment option for large septal perforations. Int Forum Allergy Rhinol 2017; 7 (07) 718-725
- 53 Li C, Farag AA, Leach J. et al. Computational fluid dynamics and trigeminal sensory examinations of empty nose syndrome patients. Laryngoscope 2017; 127 (06) E176-E184
- 54 Li C, Farag AA, Maza G. et al. Investigation of the abnormal nasal aerodynamics and trigeminal functions among empty nose syndrome patients. Int Forum Allergy Rhinol 2018; 8 (03) 444-452
- 55 Malik J, Li C, Maza G. et al. Computational fluid dynamic analysis of aggressive turbinate reductions: is it a culprit of empty nose syndrome?. Int Forum Allergy Rhinol 2019; 9 (08) 891-899
- 56 Siu J, Inthavong K, Shang Y, Vahaji S, Douglas RG. Aerodynamic impact of total inferior turbinectomy versus inferior turbinoplasty: a computational fluid dynamics study. Rhinology 2020; 58 (04) 349-359
- 57 Maza G, Li C, Krebs JP. et al. Computational fluid dynamics after endoscopic endonasal skull base surgery-possible empty nose syndrome in the context of middle turbinate resection. Int Forum Allergy Rhinol 2019; 9 (02) 204-211
- 58 Law RH, Ahmed AM, Van Harn M, Craig JR. Middle turbinate resection is unlikely to cause empty nose syndrome in first year postoperatively. Am J Otolaryngol 2021; 42 (04) 102931
- 59 Malik J, Thamboo A, Dholakia S. et al. The cotton test redistributes nasal airflow in patients with empty nose syndrome. Int Forum Allergy Rhinol 2020; 10 (04) 539-545
- 60 Malik J, Dholakia S, Spector BM. et al. Inferior meatus augmentation procedure (IMAP) normalizes nasal airflow patterns in empty nose syndrome patients via computational fluid dynamics (CFD) modeling. Int Forum Allergy Rhinol 2021; 11 (05) 902-909
- 61 Li C, Jiang J, Kim K. et al. Nasal structural and aerodynamic features that may benefit normal olfactory sensitivity. Chem Senses 2018; 43 (04) 229-237
- 62 Sicard RM, Shah R, Frank-Ito DO. Analyses on the influence of normal nasal morphological variations on odorant transport to the olfactory cleft. Inhal Toxicol 2022; 34 (11–12): 350-358
- 63 Zhao K, Jiang J, Pribitkin EA. et al. Conductive olfactory losses in chronic rhinosinusitis? A computational fluid dynamics study of 29 patients. Int Forum Allergy Rhinol 2014; 4 (04) 298-308
- 64 Zhao K, Pribitkin EA, Cowart BJ, Rosen D, Scherer PW, Dalton P. Numerical modeling of nasal obstruction and endoscopic surgical intervention: outcome to airflow and olfaction. Am J Rhinol 2006; 20 (03) 308-316
- 65 Lane A, Mullol J, Hopkins C. et al. Dupilumab leads to reduction of anosmia in patients with severe chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2022; 149 (02) AB144
- 66 Lepley TJ, Wu Z, Root Z. et al. Computational fluid dynamic modeling of the effect of dupilumab in the management of anosmia secondary to chronic rhinosinusitis with nasal polyps (CRSwNP). Int Forum Allergy Rhinol 2022; 12 (12) 1578-1580
- 67 Sanmiguel-Rojas E, Burgos MA, Esteban-Ortega F. Nasal surgery handled by CFD tools. Int J Numer Methods Biomed Eng 2018; 34 (10) e3126
- 68 Rhee JS, Cannon DE, Frank DO, Kimbell JS. Role of virtual surgery in preoperative planning: assessing the individual components of functional nasal airway surgery. Arch Facial Plast Surg 2012; 14 (05) 354-359