Laryngorhinootologie 2018; 97(03): 206-214
DOI: 10.1055/s-0044-101726
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Kopf-Hals-MRT: Was HNO-Ärzte wissen sollten

Head & Neck MRI: What ENT specialists should know
Gerlig Widmann
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
01. März 2018 (online)

Zusammenfassung

Die Magnetresonanztomografie (MRT) hat sich für die HNO-Heilkunde zu einem wichtigen bildgebenden Verfahren entwickelt. Ziel des vorliegenden CME-Beitrags für HNO-Ärzte ist es, einen Überblick über die Vor- und Nachteile sowie die Möglichkeiten der Kopf-Hals-MRT zu bieten und die wichtigsten klinischen Anwendungsgebiete der verschiedenen MRT-Sequenzen zusammenzufassen.

Abstract

Magnetic resonance imaging (MRI) has become an important imaging technique for otorhinolaryngology. The aim of the present CME contribution for ENT physicians is to provide an overview of the advantages and disadvantages as well as the possibilities of head and neck MRI and to summarize the main clinical applications of the various MRI sequences. Basic sequences (T1w, T2w, T1wC+) and fat suppression sequences (TIRM/STIR, Dixon, Spectral Fat sat) are the basis for evaluating inflammation, congenital lesions and tumors. High-resolution 3D sequences – SSFP (CISS, FIESTA), SPACE, VISTA, 3D-FLAIR – are used to assess the cranial nerves, labyrinth, and endolymphatic hydrops in Morbus Menière. Vascular sequences (3D-TOF, TWIST/TRICKS) are used in vascular contact syndromes and vascular malformations. Diffusion sequences (EPI-DWI, non-EPI-DWI, RESOLVE) are used for the evaluation of cholesteatoma, assessment of malignancy and evaluation of response to radio (chemo) therapy.

 
  • 1 Adams A, Mankad K, Offiah C. et al. Branchial cleft anomalies: a pictorial review of embryological development and spectrum of imaging findings. Insights Imaging 2016; 7: 69-76 DOI: 10.1007/s13244–015–0454–5
  • 2 Higgins LJ, Koshy J, Mitchell SE. et al. Time-resolved contrast-enhanced MRA (TWIST) with gadofosveset trisodium in the classification of soft-tissue vascular anomalies in the head and neck in children following updated 2014 ISSVA classification: first report on systematic evaluation of MRI and TWIST in a cohort of 47 children. Clin Radiol 2016; 71: 32-39 DOI: S0009–9260(15)00379–7 [pii]
  • 3 Sheth S, Branstetter BF, Escott EJ. Appearance of normal cranial nerves on steady-state free precession MR images. Radiographics 2009; 29: 1045-1055 DOI: 29/4/1045 [pii]
  • 4 Dubrulle F, Kohler R, Vincent C. et al. Differential diagnosis and prognosis of T1-weighted post-gadolinium intralabyrinthine hyperintensities. Eur Radiol 2010; 20: 2628-2636 DOI: 10.1007/s00330–010–1835–2
  • 5 Dubrulle F, Souillard R, Chechin D. et al. Diffusion-weighted MR imaging sequence in the detection of postoperative recurrent cholesteatoma. Radiology 2006; 238: 604-610 DOI: 10.1148/radiol.2381041649
  • 6 Nakashima T, Naganawa S, Pyykko I. et al. Grading of endolymphatic hydrops using magnetic resonance imaging. Acta Otolaryngol Suppl. 2009: 5-8 DOI: 908751060 [pii]
  • 7 Bender B, Widmann G, Riechelmann H. et al. [Cervicalgia with increased C-reactive protein levels]. Radiologe 2014; 54: 262-264 DOI: 10.1007/s00117–013–2616–0
  • 8 Hoang JK, Branstetter BFt, Eastwood JD. et al. Multiplanar CT and MRI of collections in the retropharyngeal space: is it an abscess?. Am J Roentgenol 2011; 196: W426-432 DOI: 196/4/W426 [pii]
  • 9 Gadodia A, Seith A, Sharma R. et al. Magnetic resonance sialography using CISS and HASTE sequences in inflammatory salivary gland diseases: comparison with digital sialography. Acta Radiol 2010; 51: 156-163 DOI: 10.3109/02841850903376306 [pii]
  • 10 Jeon TY, Kim HJ, Chung SK. et al. Sinonasal inverted papilloma: value of convoluted cerebriform pattern on MR imaging. Am J Neuroradiol 2008; 29: 1556-1560 DOI: ajnr.A1128 [pii]
  • 11 van Gils AP, van den Berg R, Falke TH. et al. MR diagnosis of paraganglioma of the head and neck: value of contrast enhancement. Am J Roentgenol 1994; 162: 147-153 DOI: 10.2214/ajr.162.1.8273654
  • 12 Eisen MD, Yousem DM, Montone KT. et al. Use of preoperative MR to predict dural, perineural, and venous sinus invasion of skull base tumors. Am J Neuroradiol 1996; 17: 1937-1945
  • 13 Li C, Yang W, Men Y. et al. Magnetic resonance imaging for diagnosis of mandibular involvement from head and neck cancers: a systematic review and meta-analysis. PLoS One 2014; 9: e112267 DOI: 10.1371/journal.pone.0112267
  • 14 Becker M, Zbaren P, Casselman JW. et al. Neoplastic invasion of laryngeal cartilage: reassessment of criteria for diagnosis at MR imaging. Radiology 2008; 249: 551-559 DOI: 249/2/551 [pii]
  • 15 Payne KF, Haq J, Brown J. et al. The role of diffusion-weighted magnetic resonance imaging in the diagnosis, lymph node staging and assessment of treatment response of head and neck cancer. Int J Oral Maxillofac Surg 2015; 44: 1-7 DOI: S0901–5027(14)00341–5 [pii]
  • 16 King AD, Chow KK, Yu KH. et al. Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 2013; 266: 531-538 DOI: radiol.12120167 [pii]
  • 17 Kolff-Gart AS, Pouwels PJ, Noij DP. et al. Diffusion-weighted imaging of the head and neck in healthy subjects: reproducibility of ADC values in different MRI systems and repeat sessions. Am J Neuroradiol 2015; 36: 384-390 DOI: ajnr.A4114 [pii]
  • 18 Vogl T, Bisdas S. Lymph node staging. Top Magn Reson Imaging 2007; 18: 303-316
  • 19 Kimura Y, Sumi M, Sakihama N. et al. MR imaging criteria for the prediction of extranodal spread of metastatic cancer in the neck. Am J Neuroradiol 2008; 29: 1355-1359 DOI: ajnr.A1088 [pii]
  • 20 Aikele P, Kittner T, Offergeld C. et al. Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery. Am J Roentgenol 2003; 181: 261-265 DOI: 10.2214/ajr.181.1.1810261