RSS-Feed abonnieren
DOI: 10.1055/s-0044-1779510
Pediatric Wrist
Abstract
Pediatric wrist injuries pose unique diagnostic challenges due to distinct bone characteristics in children and their diverse injury patterns. The dynamic development of the wrist, marked by changes in bone age and emerging ossification centers, is crucial to evaluate growth and identify potential pathologies. The skeletal composition, rich in cartilage, renders bones relatively weaker yet more elastic, impacting their susceptibility to fracture. Forearm fractures display diverse patterns influenced by torsional forces. Scaphoid fractures, less common in children, differ from those in adults. Conditions like Madelung's deformity and ulnar variance are more common wrist disorders in the pediatric population. In addition, the scarcity and nonspecificity of symptoms in those with tendon injuries and triangular fibrocartilage complex lesions can be diagnostically challenging. This article reviews pediatric wrist injuries, emphasizing ossification patterns, common fracture types, and developmental variants. Grasping these complexities in pediatric wrist development and associated pathologies is essential for precise diagnosis and treatment.
Keywords
normal variants - forearm fractures - Madelung's deformity - triangular fibrocartilage complex - ulnar variancePublikationsverlauf
Artikel online veröffentlicht:
29. Juli 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Little JT, Klionsky NB, Chaturvedi A, Soral A, Chaturvedi A. Pediatric distal forearm and wrist injury: an imaging review. Radiographics 2014; 34 (02) 472-490
- 2 Bay COA, Willacy RA, Moses AR, Coleman TE, Wilson RH. Nonspecific wrist pain in pediatric patients: a systematic review. J Orthop 2020; 22: 308-315
- 3 Dallora AL, Anderberg P, Kvist O, Mendes E, Diaz Ruiz S, Sanmartin Berglund J. Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis. PLoS One 2019; 14 (07) e0220242
- 4 Greulich WW, Pyle SI. Radiographic Atlas of Skeletal Development of the Hand and Wrist. Vol. 2. Stanford, CA:: Stanford University Press;; 1959
- 5 Tanner JM, Healy MJR, Cameron N, Goldstein H. Assessment of Skeletal Maturity and Prediction of Adult Height (TW3 Method). 3rd ed. Philadelphia, PA:: WB Saunders;; 2001
- 6 Kim K, Kim S, Lee YH, Lee SH, Lee HS, Kim S. Performance of the deep convolutional neural network based magnetic resonance image scoring algorithm for differentiating between tuberculous and pyogenic spondylitis. Sci Rep 2018; 8 (01) 13124
- 7 Jaimes C, Chauvin NA, Delgado J, Jaramillo D. MR imaging of normal epiphyseal development and common epiphyseal disorders. Radiographics 2014; 34 (02) 449-471
- 8 Salter RB, Harris WR. Injuries involving the epiphyseal plate. J Bone Joint Surg Am 1963; (45) 587-622
- 9 Eschweiler J, Li J, Quack V. et al. Anatomy, biomechanics, and loads of the wrist joint. Life (Basel) 2022; 12 (02) 188
- 10 Li W, Stimec J, Camp M, Pusic M, Herman J, Boutis K. Pediatric musculoskeletal radiographs: anatomy and fractures prone to diagnostic error among emergency physicians. J Emerg Med 2022; 62 (04) 524-533
- 11 Al-Khater KM, Hegazi TM, Al-Thani HF. et al. Time of appearance of ossification centers in carpal bones. A radiological retrospective study on Saudi children. Saudi Med J 2020; 41 (09) 938-946
- 12 Daneff M, Casalis C, Bruno CH, Bruno DA. Bone age assessment with conventional ultrasonography in healthy infants from 1 to 24 months of age. Pediatr Radiol 2015; 45 (07) 1007-1015
- 13 Bian Z, Guo Y, Lyu X, Yang Z, Cheung JPY. Relationship between hand and wrist bone age assessment methods. Medicine (Baltimore) 2020; 99 (39) e22392
- 14 Sallam AA, Briffa N, Mahmoud SS, Imam MA. Normal wrist development in children and adolescents: a geometrical observational analysis based on plain radiographs. J Pediatr Orthop 2020; 40 (09) e860-e872
- 15 Gursoy M, Coban I, Mete BD, Bulut T. The incidence of accessory ossicles of the wrist: a radiographic study. J Wrist Surg 2021; 10 (05) 458-464
- 16 Timins ME. Osseous anatomic variants of the wrist: findings on MR imaging. AJR Am J Roentgenol 1999; 173 (02) 339-344
- 17 Cavallo F, Mohn A, Chiarelli F, Giannini C. Evaluation of bone age in children: a mini-review. Front Pediatr 2021; 9: 580314
- 18 Satoh M. Bone age: assessment methods and clinical applications. Clin Pediatr Endocrinol 2015; 24 (04) 143-152
- 19 Kim JR, Shim WH, Yoon HM. et al. Computerized bone age estimation using deep learning based program: evaluation of the accuracy and efficiency. AJR Am J Roentgenol 2017; 209 (06) 1374-1380
- 20 Alshamrani K. The application of magnetic resonance imaging in skeletal age assessment. Appl Bionics Biomech 2022; 2022: 9607237
- 21 Fayad LM, Johnson P, Fishman EK. Multidetector CT of musculoskeletal disease in the pediatric patient: principles, techniques, and clinical applications. Radiographics 2005; 25 (03) 603-618
- 22 Thukral BB. Problems and preferences in pediatric imaging. Indian J Radiol Imaging 2015; 25 (04) 359-364
- 23 Mulvihill DJ, Jhawar S, Kostis JB, Goyal S. Diagnostic medical imaging in pediatric patients and subsequent cancer risk. Acad Radiol 2017; 24 (11) 1456-1462
- 24 Hryhorczuk AL, Restrepo R, Lee EY. Pediatric musculoskeletal ultrasound: practical imaging approach. AJR Am J Roentgenol 2016; 206 (05) W62–W72
- 25 Barbuto L, Di Serafino M, Della Vecchia N. et al. Pediatric musculoskeletal ultrasound: a pictorial essay. J Ultrasound 2019; 22 (04) 491-502
- 26 Crum RP, Cervantes L, Berger AJ. Pediatric hand ultrasound: common indications, injury, inflammation and masses. Pediatr Radiol 2022; 52 (09) 1671-1686
- 27 Thapa MM, Iyer RS, Khanna PC, Chew FS. MRI of pediatric patients: Part 1, normal and abnormal cartilage. AJR Am J Roentgenol 2012; 198 (05) W450–W455
- 28 Jaramillo D, Laor T. Pediatric musculoskeletal MRI: basic principles to optimize success. Pediatr Radiol 2008; 38 (04) 379-391
- 29 Sandberg JK, Young VA, Yuan J, Hargreaves BA, Wishah F, Vasanawala SS. Zero echo time pediatric musculoskeletal magnetic resonance imaging: initial experience. Pediatr Radiol 2021; 51 (13) 2549-2560
- 30 Maloney E, Zbojniewicz AM, Nguyen J, Luo Y, Thapa MM. Anatomy and injuries of the pediatric wrist: beyond the basics. Pediatr Radiol 2018; 48 (06) 764-782
- 31 Avenarius DFM, Ording Müller LS, Rosendahl K. Joint fluid, bone marrow edemalike changes, and ganglion cysts in the pediatric wrist: features that may mimic pathologic abnormalities-follow-up of a healthy cohort. AJR Am J Roentgenol 2017; 208 (06) 1352-1357
- 32 Shabshin N, Schweitzer ME. Age dependent T2 changes of bone marrow in pediatric wrist MRI. Skeletal Radiol 2009; 38 (12) 1163-1168
- 33 Verkuil F, van Gulik EC, Nusman CM. et al. Exploring contrast-enhanced MRI findings of the clinically non-inflamed symptomatic pediatric wrist. Pediatr Radiol 2020; 50 (10) 1387-1396
- 34 Chan BY, Gill KG, Rebsamen SL, Nguyen JC. MR imaging of pediatric bone marrow. Radiographics 2016; 36 (06) 1911-1930
- 35 Avenarius DM, Ording Müller LS, Eldevik P, Owens CM, Rosendahl K. The paediatric wrist revisited—findings of bony depressions in healthy children on radiographs compared to MRI. Pediatr Radiol 2012; 42 (07) 791-798
- 36 Müller LS, Avenarius D, Damasio B. et al. The paediatric wrist revisited: redefining MR findings in healthy children. Ann Rheum Dis 2011; 70 (04) 605-610
- 37 Boavida P, Hargunani R, Owens CM, Rosendahl K. Magnetic resonance imaging and radiographic assessment of carpal depressions in children with juvenile idiopathic arthritis: normal variants or erosions?. J Rheumatol 2012; 39 (03) 645-650
- 38 Eide P, Djuve Å, Myklebust R. et al. Prevalence of metaphyseal injury and its mimickers in otherwise healthy children under two years of age. Pediatr Radiol 2019; 49 (08) 1051-1055
- 39 Oestreich AE, Ahmad BS. The periphysis and its effect on the metaphysis: I. Definition and normal radiographic pattern. Skeletal Radiol 1992; 21 (05) 283-286
- 40 Kleinman PK, Marks Jr SC. Relationship of the subperiosteal bone collar to metaphyseal lesions in abused infants. J Bone Joint Surg Am 1995; 77 (10) 1471-1476
- 41 Quigley AJ, Stafrace S. Skeletal survey normal variants, artefacts and commonly misinterpreted findings not to be confused with non-accidental injury. Pediatr Radiol 2014; 44 (01) 82-93 ; quiz 79–81
- 42 Oestreich AE. Concave distal end of ulna metaphysis alone is not a sign of rickets. Pediatr Radiol 2015; 45 (07) 998-1000
- 43 Karmazyn B, Marine MB, Jones RH. et al. Radiologists' diagnostic performance in differentiation of rickets and classic metaphyseal lesions on radiographs: a multicenter study. AJR Am J Roentgenol 2022; 219 (06) 962-972
- 44 Gottschalk MB, Danilevich M, Gottschalk HP. Carpal coalitions and metacarpal synostoses: a review. Hand (N Y) 2016; 11 (03) 271-277
- 45 Burnett SE, Stojanowski CM, Mahakkanukrauh P. Six new examples of the bipartite trapezoid bone: morphology, significant population variation, and an examination of pre-existing criteria to identify bipartition of individual carpal bones. Ann Anat 2015; 198: 58-65
- 46 Lee CH, Lee KH. Symptomatic bilateral bipartite lunate: a case report. J Hand Surg Eur Vol 2015; 40 (05) 539-540
- 47 Loh BW, Harvey J, Ek ET. Congenital bipartite lunate presenting as a misdiagnosed lunate fracture: a case report. J Med Case Rep 2011; 5: 102
- 48 Dwek JR, Cardoso F, Chung CB. MR imaging of overuse injuries in the skeletally immature gymnast: spectrum of soft-tissue and osseous lesions in the hand and wrist. Pediatr Radiol 2009; 39 (12) 1310-1316
- 49 Davis KW. Imaging pediatric sports injuries: upper extremity. Radiol Clin North Am 2010; 48 (06) 1199-1211
- 50 Kraan RBJ, Kox LS, Oostra RJ, Kuijer PPFM, Maas M. The distal radial physis: Exploring normal anatomy on MRI enables interpretation of stress related changes in young gymnasts. Eur J Sport Sci 2020; 20 (09) 1197-1205
- 51 Mauck B, Kelly D, Sheffer B, Rambo A, Calandruccio JH. Gymnast's wrist (distal radial physeal stress syndrome). Orthop Clin North Am 2020; 51 (04) 493-497
- 52 Nguyen JC, Markhardt BK, Merrow AC, Dwek JR. Imaging of pediatric growth plate disturbances. Radiographics 2017; 37 (06) 1791-1812
- 53 Watkins RA, De Borja C, Ramirez F. Common upper extremity injuries in pediatric athletes. Curr Rev Musculoskelet Med 2022; 15 (06) 465-473
- 54 Ali S, Kaplan S, Kaufman T, Fenerty S, Kozin S, Zlotolow DA. Madelung deformity and Madelung-type deformities: a review of the clinical and radiological characteristics. Pediatr Radiol 2015; 45 (12) 1856-1863
- 55 Peymani A, Johnson AR, Dowlatshahi AS. et al. Surgical management of Madelung deformity: a systematic review. Hand (N Y) 2019; 14 (06) 725-734
- 56 Hafner R, Poznanski AK, Donovan JM. Ulnar variance in children—standard measurements for evaluation of ulnar shortening in juvenile rheumatoid arthritis, hereditary multiple exostosis and other bone or joint disorders in childhood. Skeletal Radiol 1989; 18 (07) 513-516
- 57 Goldfarb CA, Strauss NL, Wall LB, Calfee RP. Defining ulnar variance in the adolescent wrist: measurement technique and interobserver reliability. J Hand Surg Am 2011; 36 (02) 272-277
- 58 Kox LS, Jens S, Lauf K, Smithuis FF, van Rijn RR, Maas M. Well-founded practice or personal preference: a comparison of established techniques for measuring ulnar variance in healthy children and adolescents. Eur Radiol 2020; 30 (01) 151-162
- 59 Herman MJ, Marshall ST. Forearm fractures in children and adolescents: a practical approach. Hand Clin 2006; 22 (01) 55-67
- 60 Randsborg PH, Sivertsen EA. Distal radius fractures in children: substantial difference in stability between buckle and greenstick fractures. Acta Orthop 2009; 80 (05) 585-589
- 61 Pountos I, Clegg J, Siddiqui A. Diagnosis and treatment of greenstick and torus fractures of the distal radius in children: a prospective randomised single blind study. J Child Orthop 2010; 4 (04) 321-326
- 62 Gonzalez N, Lucas JP, Winegar A, Den Haese J, Danahy P. A review of pediatric distal radius buckle fractures and the current understanding of angled buckle fractures. Cureus 2022; 14 (05) e24943
- 63 Eberl R, Singer G, Schalamon J, Petnehazy T, Hoellwarth ME. Galeazzi lesions in children and adolescents: treatment and outcome. Clin Orthop Relat Res 2008; 466 (07) 1705-1709
- 64 Garg R, Mudgal C. Galeazzi injuries. Hand Clin 2020; 36 (04) 455-462
- 65 Saugy CA, Bregou AB. When to suspect DRUJ's instability in children? Case report of a rare presentation of distal forearm fractures. European J Pediatr Surg Rep 2022; 10 (01) e73-e75
- 66 Courcey C, Jester A, Kaur S, Lindau TR, Oestreich K. Early MRI for pediatric wrist injuries—prospective case series of 150 cases. J Wrist Surg 2022; 12 (02) 96-103
- 67 Goddard N. Carpal fractures in children. Clin Orthop Relat Res 2005; (432) 73-76
- 68 Oestreich K, Jacomel TUY, Hassan S, Horwitz MD, Lindau TR. Pediatric scaphoid nonunions: a case series, review of the literature, and evidence-based guidelines. j Wrist Surg 2020; 9 (01) 2-12
- 69 Nguyen JC, Shah AS, Nguyen MK. et al. Pediatric scaphoid fracture: diagnostic performance of various radiographic views. Emerg Radiol 2021; 28 (03) 565-572
- 70 Nguyen MK, Arkader A, Kaplan SL. et al. Radiographic characterization of acute scaphoid fractures in children under 11 years of age. Pediatr Radiol 2021; 51 (09) 1690-1695
- 71 Lee SJ, Bae DS. Triangular fibrocartilage complex injuries in children and adolescents. Hand Clin 2021; 37 (04) 517-526
- 72 Bae DS, Waters PM. Pediatric distal radius fractures and triangular fibrocartilage complex injuries. Hand Clin 2006; 22 (01) 43-53
- 73 Dwyer CL, Ramirez RN, Lubahn JD. A brief review of extensor tendon injuries specific to the pediatric patient. Hand (N Y) 2015; 10 (01) 23-27
- 74 Patel HA, Lee MC, Chaudhry S. Extensor pollicis longus tendon rupture after a pediatric distal radius fracture: a case report and literature review. JBJS Case Connect 2020; 10 (03) e20.00022
- 75 Meraj S, Gyftopoulos S, Nellans K, Walz D, Brown MS. MRI of the extensor tendons of the wrist. AJR Am J Roentgenol 2017; 209 (05) 1093-1102
- 76 Ali S, Cunningham R, Amin M, Popoff SN, Mohamed F, Barbe MF. The extensor carpi ulnaris pseudolesion: evaluation with microCT, histology, and MRI. Skeletal Radiol 2015; 44 (12) 1735-1743