CC BY 4.0 · Pharmaceutical Fronts 2024; 06(01): e29-e46
DOI: 10.1055/s-0044-1780506
Review Article

Sequencing, Physiological Regulation, and Representative Disease Research Progress of RNA m6A Modification

Xiaoqian Chen
1   Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
,
Yuanyuan Li
1   Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
,
Youfang Gan
1   Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
,
Yuyang Guo
1   Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
,
Hongling Zhou
1   Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
2   Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, People's Republic of China
,
Rui Wang
1   Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
2   Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, People's Republic of China
› Author Affiliations
Funding This work is supported by the Huazhong University of Science and Technology Talent Startup Fund; the China Postdoctoral Science Research Fund (Grant No. 217877); and the Open Fund of State Key Laboratory of Natural and Biomimetic Drugs (Peking University) (Grant No. K202218).

Abstract

To date, more than 150 chemical modifications have been disclosed in different RNA species, which are employed to diversify the structure and function of RNA in living organisms. The N 6-methyladenosine (m6A) modification, which is found in the adenosine N 6 site of RNA, has been demonstrated to be the most heavy modification in the mRNA in cells. Moreover, the m6A modification in mRNAs of mammalian and other eukaryotic cells is highly conserved and mandatorily encoded. Increasing evidence indicates that the m6A modification plays a pivotal role in gene-expression regulation and cell-fate decisions. Here, we summarize the most recent m6A-sequencing technology, as well as the molecular mechanism underlying its occurrence, development, and potential use as a target for the treatment of human diseases. Furthermore, our review highlights other newly discovered chemical modifications of RNA that are associated with human disease, as well as their underlying molecular mechanisms. Thus, significant advancements have been made in qualitative/quantitative m6A detection and high-throughput sequencing, and research linking this RNA modification to disease. Efforts toward simplified and more accessible chemical/biological technologies that contribute to precision medicine are ongoing, to benefit society and patients alike.



Publication History

Received: 24 October 2023

Accepted: 24 January 2024

Article published online:
11 March 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Aas PA, Otterlei M, Falnes PO. et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 2003; 421 (6925): 859-863
  • 2 Abbasi-Moheb L, Mertel S, Gonsior M. et al. Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Hum Genet 2012; 90 (05) 847-855
  • 3 Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife 2016; 5: e14874
  • 4 Agris PF, Vendeix FA, Graham WD. tRNA's wobble decoding of the genome: 40 years of modification. J Mol Biol 2007; 366 (01) 1-13
  • 5 Anadón C, Guil S, Simó-Riudalbas L. et al. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis. Oncogene 2016; 35 (33) 4422
  • 6 Appaiah HN, Goswami CP, Mina LA. et al. Persistent upregulation of U6:SNORD44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Res 2011; 13 (05) R86
  • 7 Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 2019; 74 (04) 640-650
  • 8 Balatti V, Nigita G, Veneziano D. et al. tsRNA signatures in cancer. Proc Natl Acad Sci U S A 2017; 114 (30) 8071-8076
  • 9 Akichika S, Hirano S, Shichino Y. et al. Cap-specific terminal N 6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 2019; 363 (6423): eaav0080
  • 10 Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 2015; 162 (06) 1299-1308
  • 11 Barbieri I, Tzelepis K, Pandolfini L. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 2017; 552 (7683): 126-131
  • 12 Batista PJ, Molinie B, Wang J. et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 2014; 15 (06) 707-719
  • 13 Boissel S, Reish O, Proulx K. et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 2009; 85 (01) 106-111
  • 14 Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell 2017; 169 (07) 1187-1200
  • 15 Sui X, Hu Y, Ren C. et al. METTL3-mediated m6A is required for murine oocyte maturation and maternal-to-zygotic transition. Cell Cycle 2020; 19 (04) 391-404
  • 16 Begley U, Sosa MS, Avivar-Valderas A. et al. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α. EMBO Mol Med 2013; 5 (03) 366-383
  • 17 Peng YX, Du J, Wang HS. The roles of m6A in cancer biology and its targeted therapy [in Chinese]. Yao Xue Xue Bao 2019; 54 (10) 1771-1782
  • 18 Li Q, Li X, Tang H. et al. NSUN2-Mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J Cell Biochem 2017; 118 (09) 2587-2598
  • 19 Safra M, Sas-Chen A, Nir R. et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 2017; 551 (7679): 251-255
  • 20 Ries RJ, Zaccara S, Klein P. et al. m6A enhances the phase separation potential of mRNA. Nature 2019; 571 (7765): 424-428
  • 21 Zhang W, Eckwahl MJ, Zhou KI, Pan T. Sensitive and quantitative probing of pseudouridine modification in mRNA and long noncoding RNA. RNA 2019; 25 (09) 1218-1225
  • 22 Lee Y, Choe J, Park OH, Kim YK. Molecular mechanisms driving mRNA degradation by m6A modification. Trends Genet 2020; 36 (03) 177-188
  • 23 Anderson AM, Weasner BP, Weasner BM, Kumar JP. The Drosophila Wilms׳ Tumor 1-Associating Protein (WTAP) homolog is required for eye development. Dev Biol 2014; 390 (02) 170-180
  • 24 Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. N 6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res 2017; 45 (19) 11356-11370
  • 25 Batista PJ. The RNA modification N 6-methyladenosine and its implications in human disease. Genomics Proteomics Bioinformatics 2017; 15 (03) 154-163
  • 26 Bertero A, Brown S, Madrigal P. et al. The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 2018; 555 (7695): 256-259
  • 27 Bodi Z, Zhong S, Mehra S. et al. Adenosine methylation in arabidopsis mRNA is associated with the 3′ end and reduced levels cause developmental defects. Front Plant Sci 2012; 3: 48
  • 28 Dominissini D, Moshitch-Moshkovitz S, Schwartz S. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485 (7397): 201-206
  • 29 Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 2012; 149 (07) 1635-1646
  • 30 Schweizer U, Bohleber S, Fradejas-Villar N. The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol 2017; 14 (09) 1197-1208
  • 31 Kimura S, Miyauchi K, Ikeuchi Y, Thiaville PC, Crécy-Lagard Vd, Suzuki T. Discovery of the β-barrel-type RNA methyltransferase responsible for N 6-methylation of N 6-threonylcarbamoyladenosine in tRNAs. Nucleic Acids Res 2014; 42 (14) 9350-9365
  • 32 Luthra A, Swinehart W, Bayooz S. et al. Structure and mechanism of a bacterial t6A biosynthesis system. Nucleic Acids Res 2018; 46 (03) 1395-1411
  • 33 Schwartz S, Agarwala SD, Mumbach MR. et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 2013; 155 (06) 1409-1421
  • 34 Luo GZ, MacQueen A, Zheng G. et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun 2014; 5: 5630
  • 35 Kan L, Grozhik AV, Vedanayagam J. et al. The m6A pathway facilitates sex determination in Drosophila. Nat Commun 2017; 8: 15737
  • 36 Zhao BS, Wang X, Beadell AV. et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 2017; 542 (7642): 475-478
  • 37 Ma L, Zhao B, Chen K. et al. Evolution of transcript modification by N 6-methyladenosine in primates. Genome Res 2017; 27 (03) 385-392
  • 38 Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T. Probing N 6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 2013; 19 (12) 1848-1856
  • 39 Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 2015; 12 (08) 767-772
  • 40 Imanishi M, Tsuji S, Suda A, Futaki S. Detection of N 6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem Commun (Camb) 2017; 53 (96) 12930-12933
  • 41 Garcia-Campos MA, Edelheit S, Toth U. et al. Deciphering the “m6A Code” via antibody-independent quantitative profiling. Cell 2019; 178 (03) 731-747.e16
  • 42 Zhang Z, Chen LQ, Zhao YL. et al. Single-base mapping of m6A by an antibody-independent method. Sci Adv 2019; 5 (07) eaax0250
  • 43 Meyer KD. DART-seq: an antibody-free method for global m6A detection. Nat Methods 2019; 16 (12) 1275-1280
  • 44 Wang Y, Xiao Y, Dong S, Yu Q, Jia G. Antibody-free enzyme-assisted chemical approach for detection of N 6-methyladenosine. Nat Chem Biol 2020; 16 (08) 896-903
  • 45 Coker H, Wei G, Brockdorff N. m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim Biophys Acta Gene Regul Mech 2019; 1862 (03) 310-318
  • 46 Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m6A methylation in cancer. Cancer Res 2019; 79 (07) 1285-1292
  • 47 Du Y, Hou G, Zhang H. et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res 2018; 46 (10) 5195-5208
  • 48 Ho AJ, Stein JL, Hua X. et al; Alzheimer's Disease Neuroimaging Initiative. A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc Natl Acad Sci U S A 2010; 107 (18) 8404-8409
  • 49 Li J, Han Y, Zhang H. et al. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem Biophys Res Commun 2019; 512 (03) 479-485
  • 50 Li XC, Jin F, Wang BY, Yin XJ, Hong W, Tian FJ. The m6A demethylase ALKBH5 controls trophoblast invasion at the maternal-fetal interface by regulating the stability of CYR61 mRNA. Theranostics 2019; 9 (13) 3853-3865
  • 51 Fazi F, Fatica A. Interplay between N 6-methyladenosine (m6A) and non-coding RNAs in cell development and cancer. Front Cell Dev Biol 2019; 7: 116
  • 52 Agarwala SD, Blitzblau HG, Hochwagen A, Fink GR. RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet 2012; 8 (06) e1002732
  • 53 Hongay CF, Grisafi PL, Galitski T, Fink GR. Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 2006; 127 (04) 735-745
  • 54 Reichel M, Köster T, Staiger D. Marking RNA: m6A writers, readers, and functions in arabidopsis. J Mol Cell Biol 2019; 11 (10) 899-910
  • 55 Hu Y, Ouyang Z, Sui X. et al. Oocyte competence is maintained by m6A methyltransferase KIAA1429-mediated RNA metabolism during mouse follicular development. Cell Death Differ 2020; 27 (08) 2468-2483
  • 56 Hsu PJ, He C. Making changes: N 6-methyladenosine-mediated decay drives the endothelial-to-hematopoietic transition. Biochemistry 2017; 56 (46) 6077-6078
  • 57 Kasowitz SD, Ma J, Anderson SJ. et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 2018; 14 (05) e1007412
  • 58 Hsu PJ, Zhu Y, Ma H. et al. Ythdc2 is an N 6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 2017; 27 (09) 1115-1127
  • 59 Zheng G, Dahl JA, Niu Y. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013; 49 (01) 18-29
  • 60 Taniguchi K, Kawai T, Kitawaki J. et al. Epitranscriptomic profiling in human placenta: N 6-methyladenosine modification at the 5′-untranslated region is related to fetal growth and preeclampsia. FASEB J 2020; 34 (01) 494-512
  • 61 Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N 6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014; 16 (02) 191-198
  • 62 Geula S, Moshitch-Moshkovitz S, Dominissini D. et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 2015; 347 (6225): 1002-1006
  • 63 Wang Y, Li Y, Yue M. et al. N 6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci 2018; 21 (02) 195-206
  • 64 Chen Y, Wang J, Xu D. et al. m6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells. Autophagy 2021; 17 (02) 457-475
  • 65 Vu LP, Pickering BF, Cheng Y. et al. The N 6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 2017; 23 (11) 1369-1376
  • 66 Yoon KJ, Ringeling FR, Vissers C. et al. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell 2017; 171 (04) 877-889.e17
  • 67 Xu H, Dzhashiashvili Y, Shah A. et al. m6A mRNA methylation is essential for oligodendrocyte maturation and CNS myelination. Neuron 2020; 105 (02) 293.e5-309.e5
  • 68 Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci 2020; 21 (01) 36-51
  • 69 Koreman E, Sun X, Lu QR. Chromatin remodeling and epigenetic regulation of oligodendrocyte myelination and myelin repair. Mol Cell Neurosci 2018; 87: 18-26
  • 70 Sevgi M, Rigoux L, Kühn AB. et al. An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. J Neurosci 2015; 35 (36) 12584-12592
  • 71 Li L, Zang L, Zhang F. et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet 2017; 26 (13) 2398-2411
  • 72 Du T, Rao S, Wu L. et al. An association study of the m6A genes with major depressive disorder in Chinese Han population. J Affect Disord 2015; 183: 279-286
  • 73 Sun L, Ma L, Zhang H. et al. Fto deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota. Theranostics 2019; 9 (03) 721-733
  • 74 Li H, Ren Y, Mao K. et al. FTO is involved in Alzheimer's disease by targeting TSC1-mTOR-Tau signaling. Biochem Biophys Res Commun 2018; 498 (01) 234-239
  • 75 Ma S, Chen C, Ji X. et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol 2019; 12 (01) 121
  • 76 He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N 6-methyladenosine and its role in cancer. Mol Cancer 2019; 18 (01) 176
  • 77 Cui Q, Shi H, Ye P. et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 2017; 18 (11) 2622-2634
  • 78 Visvanathan A, Patil V, Arora A. et al. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 2018; 37 (04) 522-533
  • 79 Visvanathan A, Patil V, Abdulla S, Hoheisel JD, Somasundaram K. N 6-methyladenosine landscape of glioma stem-like cells: METTL3 is essential for the expression of actively transcribed genes and sustenance of the oncogenic signaling. Genes (Basel) 2019; 10 (02) 141
  • 80 Chen M, Wei L, Law CT. et al. RNA N 6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 2018; 67 (06) 2254-2270
  • 81 Han J, Wang JZ, Yang X. et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer 2019; 18 (01) 110
  • 82 Wang Q, Chen C, Ding Q. et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 2020; 69 (07) 1193-1205
  • 83 Lin S, Liu J, Jiang W. et al. METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med (Wars) 2019; 14: 25-31
  • 84 Cai X, Wang X, Cao C. et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett 2018; 415: 11-19
  • 85 Li T, Hu PS, Zuo Z. et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer 2019; 18 (01) 112
  • 86 Zhu W, Si Y, Xu J. et al. Methyltransferase like 3 promotes colorectal cancer proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner. J Cell Mol Med 2020; 24 (06) 3521-3533
  • 87 Cai J, Yang F, Zhan H. et al. RNA m6A methyltransferase METTL3 promotes the growth of prostate cancer by regulating hedgehog pathway. OncoTargets Ther 2019; 12: 9143-9152
  • 88 Cui X, Wang Z, Li J. et al. Cross talk between RNA N 6-methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through Wnt/β-catenin signalling pathway. Cell Prolif 2020; 53 (03) e12768
  • 89 Taketo K, Konno M, Asai A. et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol 2018; 52 (02) 621-629
  • 90 Luo G, Xu W, Zhao Y. et al. RNA m6 A methylation regulates uveal melanoma cell proliferation, migration, and invasion by targeting c-Met. J Cell Physiol 2020; 235 (10) 7107-7119
  • 91 Lang F, Singh RK, Pei Y, Zhang S, Sun K, Robertson ES. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathog 2019; 15 (06) e1007796
  • 92 Shi Y, Fan S, Wu M. et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun 2019; 10 (01) 4892
  • 93 Bai Y, Yang C, Wu R. et al. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma. Front Oncol 2019; 9: 332
  • 94 Zhao X, Chen Y, Mao Q. et al. Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark 2018; 21 (04) 859-868
  • 95 Liu T, Wei Q, Jin J. et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res 2020; 48 (07) 3816-3831
  • 96 Nishizawa Y, Konno M, Asai A. et al. Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget 2017; 9 (07) 7476-7486
  • 97 Lin X, Chai G, Wu Y. et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun 2019; 10 (01) 2065
  • 98 Kim DJ, Iwasaki A. YTHDF1 control of dendritic cell cross-priming as a possible target of cancer immunotherapy. Biochemistry 2019; 58 (15) 1945-1946
  • 99 Tanabe A, Tanikawa K, Tsunetomi M. et al. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett 2016; 376 (01) 34-42
  • 100 Yang N, Ying P, Tian J. et al. Genetic variants in m6A modification genes are associated with esophageal squamous-cell carcinoma in the Chinese population. Carcinogenesis 2020; 41 (06) 761-768
  • 101 Fanale D, Iovanna JL, Calvo EL. et al. Germline copy number variation in the YTHDC2 gene: does it have a role in finding a novel potential molecular target involved in pancreatic adenocarcinoma susceptibility?. Expert Opin Ther Targets 2014; 18 (08) 841-850
  • 102 Huang H, Weng H, Sun W. et al. Recognition of RNA N 6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 2018; 20 (03) 285-295
  • 103 Gutschner T, Hämmerle M, Pazaitis N. et al. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology 2014; 59 (05) 1900-1911
  • 104 Müller S, Glaß M, Singh AK. et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res 2019; 47 (01) 375-390
  • 105 Hämmerle M, Gutschner T, Uckelmann H. et al. Posttranscriptional destabilization of the liver-specific long noncoding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology 2013; 58 (05) 1703-1712
  • 106 Nguyen LH, Robinton DA, Seligson MT. et al. Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models. Cancer Cell 2014; 26 (02) 248-261
  • 107 Dai N, Zhao L, Wrighting D. et al. IGF2BP2/IMP2-deficient mice resist obesity through enhanced translation of Ucp1 mRNA and other mRNAs encoding mitochondrial proteins. Cell Metab 2015; 21 (04) 609-621
  • 108 Simon Y, Kessler SM, Bohle RM, Haybaeck J, Kiemer AK. The insulin-like growth factor 2 (IGF2) mRNA-binding protein p62/IGF2BP2-2 as a promoter of NAFLD and HCC?. Gut 2014; 63 (05) 861-863
  • 109 Xu D, Shao W, Jiang Y, Wang X, Liu Y, Liu X. FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol Rep 2017; 38 (04) 2285-2292
  • 110 Deng X, Su R, Stanford S, Chen J. Critical enzymatic functions of FTO in obesity and cancer. Front Endocrinol (Lausanne) 2018; 9: 396
  • 111 Chen J, Du B. Novel positioning from obesity to cancer: FTO, an m6A RNA demethylase, regulates tumour progression. J Cancer Res Clin Oncol 2019; 145 (01) 19-29
  • 112 Li Y, Zheng D, Wang F, Xu Y, Yu H, Zhang H. Expression of demethylase genes, FTO and ALKBH1, is associated with prognosis of gastric cancer. Dig Dis Sci 2019; 64 (06) 1503-1513
  • 113 Tang B, Yang Y, Kang M. et al. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer 2020; 19 (01) 3
  • 114 Huang Y, Su R, Sheng Y. et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 2019; 35 (04) 677-691.e10
  • 115 Yang S, Wei J, Cui YH. et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun 2019; 10 (01) 2782
  • 116 Zou D, Dong L, Li C, Yin Z, Rao S, Zhou Q. The m6A eraser FTO facilitates proliferation and migration of human cervical cancer cells. Cancer Cell Int 2019; 19: 321
  • 117 Rong ZX, Li Z, He JJ. et al. Downregulation of fat mass and obesity associated (FTO) promotes the progression of intrahepatic cholangiocarcinoma. Front Oncol 2019; 9: 369
  • 118 Shriwas O, Priyadarshini M, Samal SK. et al. DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m6A-demethylation of FOXM1 and NANOG. Apoptosis 2020; 25 (3–4): 233-246
  • 119 Strick A, von Hagen F, Gundert L. et al. The N 6 -methyladenosine (m6 A) erasers alkylation repair homologue 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) are prognostic biomarkers in patients with clear cell renal carcinoma. BJU Int 2020; 125 (04) 617-624
  • 120 Wang T, Hong T, Huang Y. et al. Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J Am Chem Soc 2015; 137 (43) 13736-13739
  • 121 Huang Y, Yan J, Li Q. et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 2015; 43 (01) 373-384
  • 122 Zhuang J, Lin C, Ye J. m6 A RNA methylation regulators contribute to malignant progression in rectal cancer. J Cell Physiol 2020; 235 (09) 6300-6306
  • 123 Liu Y, Guo X, Zhao M. et al. Contributions and prognostic values of m6 A RNA methylation regulators in non-small-cell lung cancer. J Cell Physiol 2020; 235 (09) 6043-6057
  • 124 Wang J, Zhang C, He W, Gou X. Effect of m6A RNA methylation regulators on malignant progression and prognosis in renal clear cell carcinoma. Front Oncol 2020; 10: 3
  • 125 Zuo X, Chen Z, Gao W. et al. M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol 2020; 13 (01) 5
  • 126 Lu M, Zhang Z, Xue M. et al. N 6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol 2020; 5 (04) 584-598
  • 127 Chen YG, Kowtoniuk WE, Agarwal I, Shen Y, Liu DR. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol 2009; 5 (12) 879-881
  • 128 Cahová H, Winz ML, Höfer K, Nübel G, Jäschke A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 2015; 519 (7543): 374-377
  • 129 Walters RW, Matheny T, Mizoue LS, Rao BS, Muhlrad D, Parker R. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2017; 114 (03) 480-485
  • 130 Jiao X, Doamekpor SK, Bird JG. et al. 5′ End nicotinamide adenine dinucleotide cap in human cells promotes RNA decay through DXO-mediated deNADding. Cell 2017; 168 (06) 1015-1027.e10
  • 131 Zhang H, Zhong H, Zhang S. et al. NAD tagSeq reveals that NAD+-capped RNAs are mostly produced from a large number of protein-coding genes in Arabidopsis . Proc Natl Acad Sci U S A 2019; 116 (24) 12072-12077
  • 132 Bird JG, Basu U, Kuster D. et al. Highly efficient 5′ capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase. eLife 2018; 7: e42179
  • 133 Dumelin CE, Chen Y, Leconte AM, Chen YG, Liu DR. Discovery and biological characterization of geranylated RNA in bacteria. Nat Chem Biol 2012; 8 (11) 913-919
  • 134 Miles ZD, McCarty RM, Molnar G, Bandarian V. Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification. Proc Natl Acad Sci U S A 2011; 108 (18) 7368-7372
  • 135 Li J, Jiang XY, Xu SJ. et al. Medicinal chemistry strategies in seeking coronavirus inhibitors. Yao Xue Xue Bao 2020; 55 (04) 537-553
  • 136 Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcriptome. Cell 2020; 181 (04) 914-921.e10
  • 137 Zhou H, Gan Y, Li Y, Chen X, Guo Y, Wang R. Degradation of rat sarcoma proteins targeting the post-translational prenyl modifications via cascade azidation/fluorination and click reaction. J Med Chem 2023; 66 (11) 7243-7252
  • 138 Gan Y, Li Y, Zhou H, Wang R. Deciphering regulatory proteins of prenylated protein via the FRET technique using nitroso-based ene-ligation and sequential azidation and click reaction. Org Lett 2022; 24 (36) 6625-6630
  • 139 Gan Y, Chen X, Li Y, Guo Y, Wang R. Sequential azidation/azolation of prenylated derivatives and a click reaction enable selective labeling and degradation of RAS protein. J Org Chem 2023; 88 (15) 10836-10843
  • 140 Li Y, Zhou H, Liu H. et al. Development of nitroso-based probes for labeling and regulation of RAS proteins in cancer cells via sequential ene-ligation and oxime condensation. J Org Chem 2023; 88 (03) 1762-1771
  • 141 Wang S, Li Y, Zhou H, Wang L, Wang R. Development of biocompatible ene-ligation enabled by prenyl-based β-caryophyllene with triazoline/selectfluor under physiological conditions. J Org Chem 2022; 87 (13) 8648-8655
  • 142 Zhou H, Li Y, Gan Y, Wang R. Total RNA synthesis and its covalent labeling innovation. Top Curr Chem (Cham) 2022; 380 (03) 16
  • 143 Gan YF, Li YY, Chen XQ, Guo YY, Wang R. Recent advances in quinone methide chemistry for protein-proximity capturing. Synthesis 2023; 55 (08) 1172-1186
  • 144 Wang R, Vangaveti S, Ranganathan SV. et al. Synthesis, base pairing and structure studies of geranylated RNA. Nucleic Acids Res 2016; 44 (13) 6036-6045
  • 145 Li Y, Zhou H, Chen S. et al. Bioorthogonal labeling and profiling of N 6-isopentenyladenosine (i6A) modified RNA. Nucleic Acids Res 2024 (e-pub ahead of print). DOI: 10.1093/nar/gkae150