CC BY-NC-ND 4.0 · Sleep Sci 2024; 17(03): e272-e280
DOI: 10.1055/s-0044-1782173
Original Article

Sleep Debt and Insulin Resistance: What's Worse, Sleep Deprivation or Sleep Restriction?

1   Departamento de Psicobiologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
,
1   Departamento de Psicobiologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
,
1   Departamento de Psicobiologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
,
1   Departamento de Psicobiologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
2   Department of Biosciences, Instituto de Saúde e Sociedade (ISS), Universidade Federal de São Paulo (Unifesp), Santos, SP, Brazil
› Author Affiliations
Funding The present study received funds from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; #4001129/2016-7) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Abstract

Objective To evaluate which condition of sleep debt has a greater negative impact on insulin resistance: sleep deprivation for 24 hours or 4 hours of sleep restriction for 4 nights.

Materials and Methods In total, 28 healthy male subjects aged 18 to 40 years were recruited and randomly allocated to two groups: sleep deprivation (SD) and sleep restriction (SR). Each group underwent two conditions: regular sleep (11 pm to 7 am) and total sleep deprivation for 24 hours (SD); regular sleep (11 pm to 7 am) and 4 nights of sleep restriction (SR) (1 am to 5 am). The oral glucose tolerance test (OGTT) was performed, and baseline glucose, insulin, free fatty acids (FFAs), and cortisol were measured. In addition, the area under the curve (AUC) for glucose and insulin, the homeostasis model assessment of insulin resistance (HOMA-IR), and the Matsuda Index (Insulin Sensitivity Index, ISI) were calculated.

Results Glucose and insulin had a similar pattern between groups, except at the baseline, when insulin was higher in the sleep debt condition of the SR when compared with the SD (p < 0.01). In the comparison between regular sleep and sleep debt, the SD had a higher insulin AUC (p < 0.01) and FFAs (p = 0.03) after sleep deprivation, and insulin and the insulin AUC increased (p < 0.01 for both), while the ISI decreased (p = 0.02) after sleep restriction in the SR. In baseline parameters covariate by the condition of regular sleep, insulin (p = 0.02) and the HOMA-IR (p < 0.01) were higher, and cortisol (p = 0.04) was lower after sleep restriction when compared with sleep deprivation.

Conclusion Sleep restriction for 4 consecutive nights is more detrimental to energy metabolism because of the higher insulin values and insulin resistance compared with an acute period of sleep deprivation of 24 hours.

Supplementary Material



Publication History

Received: 13 February 2023

Accepted: 05 October 2023

Article published online:
21 May 2024

© 2024. Brazilian Sleep Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Eugene AR, Masiak J. The Neuroprotective Aspects of Sleep. MEDtube Sci 2015; 3 (01) 35-40
  • 2 Silber MH, Ancoli-Israel S, Bonnet MH. et al. The visual scoring of sleep in adults. J Clin Sleep Med 2007; 3 (02) 121-131 Erratum in: J Clin Sleep Med. 2007 Aug 15;3(5): table of contents. PMID: 17557422
  • 3 Hirshkowitz M, Whiton K, Albert SM. et al. National Sleep Foundation's sleep time duration recommendations: methodology and results summary. Sleep Health 2015; 1 (01) 40-43
  • 4 Mônico-Neto M, Dos Santos RVT, Moreira Antunes HK. The world war against the COVID-19 outbreak: don't forget to sleep!. J Clin Sleep Med 2020; 16 (07) 1215
  • 5 Chattu VK, Manzar MD, Kumary S, Burman D, Spence DW, Pandi-Perumal SR. The Global Problem of Insufficient Sleep and Its Serious Public Health Implications. Healthcare (Basel) 2018; 7 (01) 1
  • 6 Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Med Rev 2007; 11 (03) 163-178
  • 7 Schlierf G, Dorow E. Diurnal patterns of triglycerides, free fatty acids, blood sugar, and insulin during carbohydrate-induction in man and their modification by nocturnal suppression of lipolysis. J Clin Invest 1973; 52 (03) 732-740
  • 8 Scheen AJ, Byrne MM, Plat L, Leproult R, Van Cauter E. Relationships between sleep quality and glucose regulation in normal humans. Am J Physiol 1996; 271 (2 Pt 1): E261-E270
  • 9 Trenell MI, Marshall NS, Rogers NL. Sleep and metabolic control: waking to a problem?. Clin Exp Pharmacol Physiol 2007; 34 (1-2): 1-9
  • 10 Ness KM, Strayer SM, Nahmod NG, Chang AM, Buxton OM, Shearer GC. Two nights of recovery sleep restores the dynamic lipemic response, but not the reduction of insulin sensitivity, induced by five nights of sleep restriction. Am J Physiol Regul Integr Comp Physiol 2019; 316 (06) R697-R703
  • 11 Broussard JL, Chapotot F, Abraham V. et al. Sleep restriction increases free fatty acids in healthy men. Diabetologia 2015; 58 (04) 791-798
  • 12 Leahy JL, Cooper HE, Deal DA, Weir GC. Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions. J Clin Invest 1986; 77 (03) 908-915
  • 13 Riboulet-Chavey A, Pierron A, Durand I, Murdaca J, Giudicelli J, Van Obberghen E. Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes 2006; 55 (05) 1289-1299
  • 14 Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 2008; 118 (09) 2992-3002
  • 15 Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14 (04) 263-283
  • 16 Donga E, van Dijk M, van Dijk JG. et al. Partial sleep restriction decreases insulin sensitivity in type 1 diabetes. Diabetes Care 2010; 33 (07) 1573-1577
  • 17 Tuomilehto H, Peltonen M, Partinen M. et al. Sleep duration is associated with an increased risk for the prevalence of type 2 diabetes in middle-aged women - The FIN-D2D survey. Sleep Med 2008; 9 (03) 221-227
  • 18 Klingenberg L, Chaput JP, Holmbäck U. et al. Acute Sleep Restriction Reduces Insulin Sensitivity in Adolescent Boys. Sleep 2013; 36 (07) 1085-1090
  • 19 Bescos R, Boden MJ, Jackson ML. et al. Four days of simulated shift work reduces insulin sensitivity in humans. Acta Physiol (Oxf) 2018; 223 (02) e13039
  • 20 Darukhanavala A, Booth III JN, Bromley L, Whitmore H, Imperial J, Penev PD. Changes in insulin secretion and action in adults with familial risk for type 2 diabetes who curtail their sleep. Diabetes Care 2011; 34 (10) 2259-2264
  • 21 de Souza JFT, Dáttilo M, de Mello MT, Tufik S, Antunes HKM. High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males. Front Physiol 2017; 8: 992
  • 22 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28 (07) 412-419
  • 23 Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22 (09) 1462-1470
  • 24 Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, Braggion G. Questionário Internacional de Atividade Física (IPAQ): Estudo de validade e reprodutibilidade no Brasil. Atividade Física e Saúde. 2001; 6 (02) 5-18
  • 25 Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991; 14 (06) 540-545
  • 26 -. Validação da escala de Sonolência de Epworth para uso no Brasil. J Bras Pneumol 2009; 35 (09) 877-883
  • 27 Bertolazi NA. Tradução adaptação cultural e validação de dois instrumentos de avaliação do sono: Escala de Sonolência de Epworth e Índice de Qualidade de Sono de Pittsburgh [tese]. Porto Alegre:: Universidade Federal do Rio Grande do Sul;; 2008
  • 28 Bertolazi AN, Fagondes SC, Hoff LS. et al. Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. Sleep Med 2011; 12 (01) 70-75
  • 29 Buysse DJ, Reynolds III CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989; 28 (02) 193-213
  • 30 Pires ML, Benedito-Silva AA, Mello MT, Pompeia SdelG, Tufik S. Sleep habits and complaints of adults in the city of São Paulo, Brazil, in 1987 and 1995. Braz J Med Biol Res 2007; 40 (11) 1505-1515
  • 31 Gorenstein C. [Reliability of a sleep self-evaluation questionnaire]. AMB (Sao Paulo) 1983; 29 (9-10): 155-157
  • 32 Gorenstein C, Tavares S, Aloé F. Questionário de auto-avaliação do sono. Lemos Editorial, São Paulo 2000; 1 (01) 423-434
  • 33 Zomer J, Peied AH, Rubin E, Lavie P. Mini-Sleep Questionnaire (MSQ) for screening large populations for EDS complaints. Sleep '84: IN: Proceedings of the 7th European Congress on Sleep Research, p.467–70, 1985
  • 34 VanHelder T, Symons JD, Radomski MW. Effects of sleep deprivation and exercise on glucose tolerance. Aviat Space Environ Med 1993; 64 (06) 487-492
  • 35 Donga E, van Dijk M, van Dijk JG. et al. A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J Clin Endocrinol Metab 2010; 95 (06) 2963-2968
  • 36 Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes 2010; 59 (09) 2126-2133
  • 37 Sweeney EL, Jeromson S, Hamilton DL, Brooks NE, Walshe IH. Skeletal muscle insulin signaling and whole-body glucose metabolism following acute sleep restriction in healthy males. Physiol Rep 2017; 5 (23) e13498
  • 38 Spiegel K, Leproult R, L'hermite-Balériaux M, Copinschi G, Penev PD, Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 2004; 89 (11) 5762-5771
  • 39 Rao MN, Neylan TC, Grunfeld C, Mulligan K, Schambelan M, Schwarz JM. Subchronic sleep restriction causes tissue-specific insulin resistance. J Clin Endocrinol Metab 2015; 100 (04) 1664-1671
  • 40 Holloway GP, Luiken JJ, Glatz JF, Spriet LL, Bonen A. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview. Acta Physiol (Oxf) 2008; 194 (04) 293-309
  • 41 Nielsen TS, Jessen N, Jørgensen JO, Møller N, Lund S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 2014; 52 (03) R199-R222
  • 42 Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol 2005; 99 (05) 2008-2019
  • 43 Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354 (9188) 1435-1439
  • 44 Nedeltcheva AV, Kessler L, Imperial J, Penev PD. Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance. J Clin Endocrinol Metab 2009; 94 (09) 3242-3250
  • 45 Joo EY, Yoon CW, Koo DL, Kim D, Hong SB. Adverse effects of 24 hours of sleep deprivation on cognition and stress hormones. J Clin Neurol 2012; 8 (02) 146-150
  • 46 Dáttilo M, Antunes HKM, Galbes NMN. et al. Effects of Sleep Deprivation on Acute Skeletal Muscle Recovery after Exercise. Med Sci Sports Exerc 2020; 52 (02) 507-514
  • 47 Wu H, Zhao Z, Stone WS. et al. Effects of sleep restriction periods on serum cortisol levels in healthy men. Brain Res Bull 2008; 77 (05) 241-245
  • 48 Michaud K, Matheson K, Kelly O, Anisman H. Impact of stressors in a natural context on release of cortisol in healthy adult humans: a meta-analysis. Stress 2008; 11 (03) 177-197
  • 49 Hayes LD, Bickerstaff GF, Baker JS. Interactions of cortisol, testosterone, and resistance training: influence of circadian rhythms. Chronobiol Int 2010; 27 (04) 675-705
  • 50 Van Dongen HP, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003; 26 (02) 117-126
  • 51 Orzeł-Gryglewska J. Consequences of sleep deprivation. Int J Occup Med Environ Health 2010; 23 (01) 95-114
  • 52 Skorucak J, Arbon EL, Dijk DJ, Achermann P. Response to chronic sleep restriction, extension, and subsequent total sleep deprivation in humans: adaptation or preserved sleep homeostasis?. Sleep (Basel) 2018; 41 (07)
  • 53 Briançon-Marjollet A, Weiszenstein M, Henri M, Thomas A, Godin-Ribuot D, Polak J. The impact of sleep disorders on glucose metabolism: endocrine and molecular mechanisms. Diabetol Metab Syndr 2015; 7: 25
  • 54 Spiegel K, Leproult R, Colecchia EF. et al. Adaptation of the 24-h growth hormone profile to a state of sleep debt. Am J Physiol Regul Integr Comp Physiol 2000; 279 (03) R874-R883
  • 55 Owino S, Buonfiglio DDC, Tchio C, Tosini G. Melatonin Signaling a Key Regulator of Glucose Homeostasis and Energy Metabolism. Front Endocrinol (Lausanne) 2019; 10: 488
  • 56 Benedict C, Vogel H, Jonas W. et al. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Mol Metab 2016; 5 (12) 1175-1186
  • 57 Del Giglio SB. . Estudo da ocorrência das queixas de insônia, de sonolência excessiva diurna e das relativas às parassonias na população adulta da cidade de São Paulo. Thesis (PhD in Medicine) - Escola Paulista de Medicina. Universidade de São Paulo, São Paulo, 1988