CC BY 4.0 · Eur J Dent 2024; 18(04): 1107-1115
DOI: 10.1055/s-0044-1782190
Original Article

The Effects of Ultrasonic Scaling and Air-Abrasive Powders on the Topography of Implant Surfaces: Scanning Electron Analysis and In Vitro Study

Francesco Gianfreda
1   Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome, Italy
,
Gaetano Marenzi
2   Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples Federico II, Naples, Italy
,
Eleonora Nicolai
3   Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
,
Maurizio Muzzi
4   Department of Science, University Roma Tre, Viale G. Marconi, Rome, Italy
,
Monica Bari
5   Facoltà Dipartimentale di Medicina, Università Campus Bio-Medico, Rome, Italy
,
Sergio Bernardini*
3   Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
,
Daniela Adamo
2   Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples Federico II, Naples, Italy
,
Alessandra Miniello
2   Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples Federico II, Naples, Italy
,
Gilberto Sammartino*
2   Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples Federico II, Naples, Italy
,
Patrizio Bollero*
6   Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
› Author Affiliations

Abstract

Objectives This in vitro study aimed to investigate the impact of bicarbonate air-abrasive powders and ultrasonic scaling with stainless steel tips on the micro- and nanotopography and roughness of three different implant–abutment junction titanium surfaces.

Materials and Methods Three types of sterile and decontaminated titanium surfaces (RS, UTM, XA) were used for analysis. Nine disks per surface type were subjected to micro- and nanotopography analysis, scanning electron microscopy (SEM), roughness analysis, and fibroblast cultivation. Ultrasonic debridement and air polishing were performed on the surfaces. Human dermal fibroblasts were cultured on the surfaces for 5 days.

Statistical Analysis Data analysis adhered to ISO 25178 standards for surface texture assessment. SEM micrographs were used to reconstruct areas for extracting roughness parameters. Excel and Mex 6.0 software were utilized for quantitative and stereoscopic analysis.

Results The study found varying effects on surface roughness posttreatment. RS Disco samples exhibited higher surface roughness compared with UTM and XA samples, both in average and nanoscale roughness. Decontamination led to increased surface roughness for all samples, particularly RS Disco. Fibroblast growth tests revealed enhanced cell network formation on decontaminated discs, possibly due to increased nanoscale roughness or the presence of bicarbonate salts.

Conclusion The study underscores the complex interplay between surface topography, microbial biofilm, and treatment efficacy in peri-implant disease management. While smoother surfaces may resist biofilm accumulation, increased nanoscale roughness postdecontamination can enhance fibroblast attachment and soft tissue integration. This dichotomy highlights the need for tailored treatment protocols that consider material-specific factors, emphasizing that successful implant therapy should balance microbial control with conducive surface characteristics for long-term osseointegration and soft tissue stability.

* These authors contributed equally to this work.




Publication History

Article published online:
02 May 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Schwartz F, Derks J, Monje A, Wang HL. Peri-implantitis. J Clin Periodontol 2018;45
  • 2 Fragkioudakis I, Tseleki G, Doufexi AE, Sakellari D. Current concepts on the pathogenesis of peri-implantitis: a narrative review. Eur J Dent 2021; 15 (02) 379-387
  • 3 Berglundh T, Armitage G, Araujo MG. et al. Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol 2018; 45 (Suppl. 20) S286-S291
  • 4 Pesce P, Canullo L, Grusovin MG, de Bruyn H, Cosyn J, Pera P. Systematic review of some prosthetic risk factors for periimplantitis. J Prosthet Dent 2015; 114 (03) 346-350
  • 5 Pesce P, Menini M, Tealdo T, Bevilacqua M, Pera F, Pera P. Peri-implantitis: a systematic review of recently published papers. Int J Prosthodont 2014; 27 (01) 15-25
  • 6 Iorio-Siciliano V, Blasi A, Iorio-Siciliano A, Isola G, Ramaglia L. Clinical and radiographic outcomes of implants with two different collar surfaces in treated periodontitis patients: a 10-year retrospective study. Int J Periodont Restor Dent 2021; 41 (06) e233-e242
  • 7 Costa FO, Takenaka-Martinez S, Cota LO, Ferreira SD, Silva GL, Costa JE. Peri-implant disease in subjects with and without preventive maintenance: a 5-year follow-up. J Clin Periodontol 2012; 39 (02) 173-181
  • 8 Wheelis SE, Gindri IM, Valderrama P, Wilson Jr TG, Huang J, Rodrigues DC. Effects of decontamination solutions on the surface of titanium: investigation of surface morphology, composition, and roughness. Clin Oral Implants Res 2016; 27 (03) 329-340
  • 9 Canullo L, Schlee M, Wagner W, Covani U. International Brainstorming Meeting on etiologic and risk factors of peri-implantitis, Montegrotto 2014. Int J Oral Maxillofac Implants 2015; 30: 1093-1104
  • 10 Chan D, Pelekos G, Ho D, Cortellini P, Tonetti MS. The depth of the implant mucosal tunnel modifies the development and resolution of experimental peri-implant mucositis: a case-control study. J Clin Periodontol 2019; 46 (02) 248-255
  • 11 Penarrocha-Oltra D, Monreal-Bello A, Penarrocha-Diago M, Alonso-Perez-Barquero J, Botticelli D, Canullo L. Microbial colonization of the peri-implant sulcus and implant connection of implants restored with cemented versus screw-retained superstructures: a cross-sectional study. J Periodontol 2016; 87 (09) 1002-1011
  • 12 Persson LG, Ericsson I, Berglundh T, Lindhe J. Osseintegration following treatment of peri-implantitis and replacement of implant components. An experimental study in the dog. J Clin Periodontol 2001; 28 (03) 258-263
  • 13 Canullo L, Genova T, Wang HL, Carossa S, Mussano F. Plasma of Argon increases cell attachment and bacterial decontamination on different implant surfaces. Int J Oral Maxillofac Implants 2017; 32 (06) 1315-1323
  • 14 Matsubara VH, Leong BW, Leong MJL, Lawrence Z, Becker T, Quaranta A. Cleaning potential of different air abrasive powders and their impact on implant surface roughness. Clin Implant Dent Relat Res 2020; 22 (01) 96-104
  • 15 Menini M, Delucchi F, Bagnasco F, Pera F, Di Tullio N, Pesce P. Efficacy of air-polishing devices without removal of implant-supported full-arch prostheses. Int J Oral Implantol (New Malden) 2021; 14 (04) 401-416
  • 16 Menini M, Setti P, Dellepiane E, Zunino P, Pera P, Pesce P. Comparison of biofilm removal using glycine air polishing versus sodium bicarbonate air polishing or hand instrumentation on full-arch fixed implant rehabilitations: a split-mouth study. Quintessence Int 2019; 50 (09) 722-730
  • 17 Krishna R, De Stefano JA. Ultrasonic vs. hand instrumentation in periodontal therapy: clinical outcomes. Periodontol 2000 2016; 71 (01) 113-127
  • 18 Bassetti M, Bassetti R, Sculean A, Salvi GE. [Subcutaneous emphysema following non-surgical peri-implantitis therapy using an air abrasive device: a case report]. Swiss Dent J 2014; 124 (7-8): 807-817
  • 19 Sahm N, Becker J, Santel T, Schwarz F. Non-surgical treatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine: a prospective, randomized, controlled clinical study. J Clin Periodontol 2011; 38 (09) 872-878
  • 20 Heitz-Mayfield LJ, Salvi GE, Botticelli D, Mombelli A, Faddy M, Lang NP. Implant Complication Research Group. Anti-infective treatment of peri-implant mucositis: a randomised controlled clinical trial. Clin Oral Implants Res 2011; 22 (03) 237-241
  • 21 de Tapia B, Mozas C, Valles C, Nart J, Sanz M, Herrera D. Adjunctive effect of modifying the implant-supported prosthesis in the treatment of peri-implant mucositis. J Clin Periodontol 2019; 46 (10) 1050-1060
  • 22 Iorio-Siciliano V, Blasi A, Stratul SI. et al. Anti-infective therapy of peri-implant mucositis with adjunctive delivery of a sodium hypochlorite gel: a 6-month randomized triple-blind controlled clinical trial. Clin Oral Investig 2020; 24 (06) 1971-1979
  • 23 Iorio-Siciliano V, Blasi A, Isola G, Sculean A, Salvi GE, Ramaglia L. Resolution of peri-implant mucositis at tissue- and bone-level implants: a 6-month prospective controlled clinical trial. Clin Oral Implants Res 2023; 34 (05) 450-462
  • 24 Elemek E, Agrali OB, Kuru B, Kuru L. Peri-implantitis and severity level. Eur J Dent 2020; 14 (01) 24-30
  • 25 Lang NP, Berglundh T. Working Group 4 of Seventh European Workshop on Periodontology. Periimplant diseases: where are we now?–Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol 2011; 38 (Suppl. 11) 178-181
  • 26 Heitz-Mayfield LJA. Diagnosis and management of peri-implant diseases. Aust Dent J 2008; 53 (1, Suppl 1): S43-S48
  • 27 Passariello C, Di Nardo D, Testarelli L. Inflammatory periimplant diseases and the periodontal connection question. Eur J Dent 2019; 13 (01) 119-123
  • 28 Mombelli A, Décaillet F, Almaghlouth A, Wick P, Cionca N. [Efficient, minimally invasive periodontal therapy. An evidence based treatment concept]. Schweiz Monatsschr Zahnmed 2011; 121 (02) 145-157
  • 29 Mombelli A, Lang NP. Microbial aspects of implant dentistry. Periodontol 2000 1994; 4: 74-80
  • 30 Renvert S, Roos-Jansåker AM, Claffey N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol 2008; 35 (8, Suppl): 305-315
  • 31 Karring ES, Stavropoulos A, Ellegaard B, Karring T. Treatment of peri-implantitis by the vector system. Clin Oral Implants Res 2005; 16 (03) 288-293
  • 32 Schwarz F, Sculean A, Rothamel D, Schwenzer K, Georg T, Becker J. Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res 2005; 16 (01) 44-52
  • 33 Schwarz F, Bieling K, Bonsmann M, Latz T, Becker J. Nonsurgical treatment of moderate and advanced periimplantitis lesions: a controlled clinical study. Clin Oral Investig 2006; 10 (04) 279-288
  • 34 Renvert S, Lessem J, Dahlén G, Lindahl C, Svensson M. Topical minocycline microspheres versus topical chlorhexidine gel as an adjunct to mechanical debridement of incipient peri-implant infections: a randomized clinical trial. J Clin Periodontol 2006; 33 (05) 362-369
  • 35 Schwarz F, Papanicolau P, Rothamel D, Beck B, Herten M, Becker J. Influence of plaque biofilm removal on reestablishment of the biocompatibility of contaminated titanium surfaces. J Biomed Mater Res A 2006; 77 (03) 437-444
  • 36 Schwarz F, Jepsen S, Herten M, Sager M, Rothamel D, Becker J. Influence of different treatment approaches on non-submerged and submerged healing of ligature induced peri-implantitis lesions: an experimental study in dogs. J Clin Periodontol 2006; 33 (08) 584-595
  • 37 Augthun M, Tinschert J, Huber A. In vitro studies on the effect of cleaning methods on different implant surfaces. J Periodontol 1998; 69 (08) 857-864
  • 38 Kreisler M, Kohnen W, Christoffers AB. et al. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er:YAG laser and an air powder system. Clin Oral Implants Res 2005; 16 (01) 36-43
  • 39 Schwarz F, Ferrari D, Popovski K, Hartig B, Becker J. Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J Biomed Mater Res B Appl Biomater 2009; 88 (01) 83-91
  • 40 Gianfreda F, Raffone C, Antonacci D. et al. Early biological response of an ultra-hydrophilic implant surface activated by salts and dry technology: an in-vitro study. Appl Sci 2021; 11: 6120
  • 41 Gianfreda F, Antonacci D, Raffone C, Muzzi M, Pistilli V, Bollero P. Microscopic characterization of bioactivate implant surfaces: increasing wettability using salts and dry technology. Materials (Basel) 2021; 14 (10) 2608
  • 42 Cafiero C, Aglietta M, Iorio-Siciliano V, Salvi GE, Blasi A, Matarasso S. Implant surface roughness alterations induced by different prophylactic procedures: an in vitro study. Clin Oral Implants Res 2017; 28 (07) e16-e20
  • 43 Blasi A, Iorio-Siciliano V, Pacenza C, Pomingi F, Matarasso S, Rasperini G. Biofilm removal from implants supported restoration using different instruments: a 6-month comparative multicenter clinical study. Clin Oral Implants Res 2016; 27 (02) e68-e73