CC BY 4.0 · Glob Med Genet 2024; 11(01): 113-122
DOI: 10.1055/s-0044-1785234
Review Article

CRISPR–Cas9 Gene Editing: Curing Genetic Diseases by Inherited Epigenetic Modifications

Nikhil Deep Kolanu
1   China Medical University, Shenyang, China
› Author Affiliations
Funding None.

Abstract

Introduction CRISPR–Cas9 gene editing, leveraging bacterial defense mechanisms, offers precise DNA modifications, holding promise in curing genetic diseases. This review critically assesses its potential, analyzing evidence on therapeutic applications, challenges, and future prospects. Examining diverse genetic disorders, it evaluates efficacy, safety, and limitations, emphasizing the need for a thorough understanding among medical professionals and researchers. Acknowledging its transformative impact, a systematic review is crucial for informed decision-making, responsible utilization, and guiding future research to unlock CRISPR–Cas9's full potential in realizing the cure for genetic diseases.

Methods A comprehensive literature search across PubMed, Scopus, and the Web of Science identified studies applying CRISPR–Cas9 gene editing for genetic diseases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria covered in vitro and in vivo models targeting various genetic diseases with reported outcomes on disease modification or potential cure. Quality assessment revealed a generally moderate to high risk of bias. Heterogeneity prevented quantitative meta-analysis, prompting a narrative synthesis of findings.

Discussion CRISPR–Cas9 enables precise gene editing, correcting disease-causing mutations and offering hope for previously incurable genetic conditions. Leveraging inherited epigenetic modifications, it not only fixes mutations but also restores normal gene function and controls gene expression. The transformative potential of CRISPR–Cas9 holds promise for personalized treatments, improving therapeutic outcomes, but ethical considerations and safety concerns must be rigorously addressed to ensure responsible and safe application, especially in germline editing with potential long-term implications.

Authors Contribution

N.D.K.: Conceptualization, Methodology, Validation, Writing, Editing, Review.


Data Availability

All the data used in the study are present within the study itself. No new data were created or analyzed in this study.


Ethics Approval and Consent to Participate

Not applicable.


Consent for Publication

Not applicable.




Publication History

Article published online:
29 March 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346 (6213) 1258096
  • 2 Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 2014; 23 (R1): R40-R46
  • 3 Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 2014; 32 (08) 819-821
  • 4 Gootenberg JS, Abudayyeh OO, Lee JW. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017; 356 (6336) 438-442
  • 5 Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009; 10 (11) 805-811
  • 6 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337 (6096) 816-821
  • 7 Cong L, Ran FA, Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339 (6121) 819-823
  • 8 Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014; 507 (7490) 62-67
  • 9 Barrangou R, Fremaux C, Deveau H. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315 (5819) 1709-1712
  • 10 Yoshiba T, Saga Y, Urabe M. et al. CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett 2019; 17 (02) 2197-2206
  • 11 Schwank G, Koo BK, Sasselli V. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013; 13 (06) 653-658
  • 12 Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014; 345 (6201) 1184-1188
  • 13 Maeder ML, Stefanidakis M, Wilson CJ. et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 2019; 25 (02) 229-233
  • 14 Torres-Ruiz R, Rodriguez-Perales S. CRISPR-Cas9: a revolutionary tool for cancer modelling. Int J Mol Sci 2015; 16 (09) 22151-22168
  • 15 Hart T, Chandrashekhar M, Aregger M. et al. High-resolution crispr screens reveal fitness genes and genotype-specific cancer liabilities. Cell 2015; 163 (06) 1515-1526
  • 16 Aguirre AJ, Meyers RM, Weir BA. et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 2016; 6 (08) 914-929
  • 17 Han K, Pierce SE, Li A. et al. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature 2020; 580 (7801) 136-141
  • 18 Ihry RJ, Worringer KA, Salick MR. et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 2018; 24 (07) 939-946
  • 19 Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 2014; 516 (7531) 428-431
  • 20 Ascierto PA, Kirkwood JM, Grob JJ. et al. The role of BRAF V600 mutation in melanoma. J Transl Med 2012; 10: 85
  • 21 Shalem O, Sanjana NE, Hartenian E. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343 (6166) 84-87
  • 22 Behan FM, Iorio F, Picco G. et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 2019; 568 (7753) 511-516
  • 23 Drost J, van Jaarsveld RH, Ponsioen B. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015; 521 (7550) 43-47
  • 24 Sachs N, de Ligt J, Kopper O. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018; 172 (1-2): 373-386.e10
  • 25 Hu W, Kaminski R, Yang F. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A 2014; 111 (31) 11461-11466
  • 26 Zhen S, Hua L, Liu YH. et al. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 2015; 22 (05) 404-412
  • 27 Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 2019; 14 (10) 2986-3012
  • 28 Pursey E, Sünderhauf D, Gaze WH, Westra ER, van Houte S. CRISPR-Cas antimicrobials: challenges and future prospects. PLoS Pathog 2018; 14 (06) e1006990
  • 29 Bikard D, Euler CW, Jiang W. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 2014; 32 (11) 1146-1150
  • 30 Lee MCS, Lindner SE, Lopez-Rubio JJ, Llinás M. Cutting back malaria: CRISPR/Cas9 genome editing of Plasmodium. Brief Funct Genomics 2019; 18 (05) 281-289
  • 31 Vojta A, Dobrinić P, Tadić V. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 2016; 44 (12) 5615-5628
  • 32 Liu XS, Wu H, Ji X. et al. Editing DNA methylation in the mammalian genome. Cell 2016; 167 (01) 233-247.e17
  • 33 Yarychkivska O, Shahabuddin Z, Comfort N, Boulard M, Bestor TH. BAH domains and a histone-like motif in DNA methyltransferase 1 (DNMT1) regulate de novo and maintenance methylation in vivo . J Biol Chem 2018; 293 (50) 19466-19475
  • 34 Vasquez JJ, Wedel C, Cosentino RO, Siegel TN. Exploiting CRISPR-Cas9 technology to investigate individual histone modifications. Nucleic Acids Res 2018; 46 (18) e106
  • 35 Hilton IB, D'Ippolito AM, Vockley CM. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015; 33 (05) 510-517
  • 36 Konermann S, Brigham MD, Trevino AE. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015; 517 (7536) 583-588
  • 37 Zuo E, Cai YJ, Li K. et al. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res 2017; 27 (07) 933-945
  • 38 Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157 (06) 1262-1278
  • 39 Fu Y, Zhu Z, Meng G, Zhang R, Zhang Y. A CRISPR-Cas9 based shuffle system for endogenous histone H3 and H4 combinatorial mutagenesis. Sci Rep 2021; 11 (01) 3298
  • 40 Morgens DW, Deans RM, Li A, Bassik MC. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat Biotechnol 2016; 34 (06) 634-636
  • 41 Chen JS, Dagdas YS, Kleinstiver BP. et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 2017; 550 (7676) 407-410
  • 42 Charlesworth CT, Deshpande PS, Dever DP. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019; 25 (02) 249-254
  • 43 Chew WL, Tabebordbar M, Cheng JK. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 2016; 13 (10) 868-874
  • 44 Perna F, Berman SH, Soni RK. et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 2017; 32 (04) 506-519.e5
  • 45 Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov 2017; 16 (06) 387-399
  • 46 Frangoul H, Ho TW, Corbacioglu S. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. Reply. N Engl J Med 2021; 384 (23) e91
  • 47 Germino-Watnick P, Hinds M, Le A, Chu R, Liu X, Uchida N. Hematopoietic stem cell gene-addition/editing therapy in sickle cell disease. Cells 2022; 11 (11) 1843 DOI: 10.3390/cells11111843.
  • 48 Esrick EB, Lehmann LE, Biffi A. et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med 2021; 384 (03) 205-215
  • 49 Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351 (6268) 84-88
  • 50 Kleinstiver BP, Pattanayak V, Prew MS. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529 (7587) 490-495
  • 51 Yin H, Song CQ, Dorkin JR. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016; 34 (03) 328-333
  • 52 Liang P, Xu Y, Zhang X. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6 (05) 363-372
  • 53 Lander ES, Baylis F, Zhang F. et al. Adopt a moratorium on heritable genome editing. Nature 2019; 567 (7747) 165-168
  • 54 Baylis F, McLeod M. First-in-human Phase 1 CRISPR gene editing cancer trials: are we ready?. Curr Gene Ther 2017; 17 (04) 309-319
  • 55 Regenberg A, Mathews DJ, Blass DM. Opportunities and challenges in the emerging field of synthetic biology. J Law, Med Ethics: J Amer Soci Law. Med Ethics (Burlingt, Mass) 2009; 37 (03) 485-501
  • 56 National Academies of Sciences, Engineering, and Medicine, National Academy of Medicine, National Academy of Sciences, & Committee on Human Gene Editing: Scientific, Medical, and Ethical Considerations. Human Genome Editing: Science, Ethics, and Governance. National Academies Press: US; 2017
  • 57 Crunkhorn S. Expanding the gene editing landscape. Nat Rev Drug Discov 2019; 18 (12) 904
  • 58 Jasanoff S, Hurlbut JB, Saha K. Democratic governance of human germline genome editing. CRISPR J 2019; 2 (05) 266-271
  • 59 Marchant GE. Global governance of human genome editing: what are the rules?. Annu Rev Genomics Hum Genet 2021; 22: 385-405
  • 60 Ran FA, Cong L, Yan WX. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520 (7546) 186-191 DOI: 10.1038/NATURE14299.
  • 61 Kim HK, Song M, Lee J. et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 2017; 14 (02) 153-159 DOI: 10.1038/nmeth.4104.
  • 62 Gaudelli NM, Komor AC, Rees HA. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017; 551 (7681) 464-471 DOI: 10.1038/nature24644.
  • 63 Liu Z, Lu Z, Yang G. et al. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 2018; 9 (01) 2338
  • 64 Wang M, Zuris JA, Meng F. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A 2016; 113 (11) 2868-2873