RSS-Feed abonnieren
DOI: 10.1055/s-0044-1786037
Fundamentals of deep brain stimulation for Parkinson's disease in clinical practice: part 2
Princípios da estimulação cerebral profunda na doença de Parkinson na prática clínica: parte 2Abstract
The field of neuromodulation has evolved significantly over the past decade. Developments include novel indications and innovations of hardware, software, and stimulation techniques leading to an expansion in scope and role of these techniques as powerful therapeutic interventions. In this review, which is the second part of an effort to document and integrate the basic fundamentals and recent successful developments in the field, we will focus on classic paradigms for electrode placement as well as new exploratory targets, mechanisms of neuromodulation using this technique and new developments, including focused ultrasound driven ablative procedures.
Resumo
O campo da neuromodulação evoluiu significativamente na última década. Esse progresso inclui novas indicações e inovações de hardware, software e técnicas de estimulação, levando a uma expansão das áreas clínicas cobertas e no papel dessas técnicas como intervenções terapêuticas eficazes. Nesta revisão, que é a segunda parte de um esforço para documentar e integrar os fundamentos básicos e os desenvolvimentos recentes e bem-sucedidos no campo, vamos nos concentrar em paradigmas clássicos para colocação de eletrodos, bem como em novos alvos exploratórios, mecanismos de neuromodulação usados por esta técnica e novos desenvolvimentos, incluindo procedimentos ablativos orientados por ultrassom focalizado.
Authors' Contributions
MM, CHA conceptualization, acquisition of data, drafting, review and editing the manuscript; MMM, LBB, ACF: drafting, review and editing the manuscript; MH: interpretation of data and manuscript revision; CH, HBF: drafting, review and editing the manuscript; RPM: conceptualization, acquisition of data, drafting, review and editing the manuscript. MM, CHA, RPM: These authors equally contributed to this work.
Publikationsverlauf
Eingereicht: 05. August 2023
Angenommen: 30. Oktober 2023
Artikel online veröffentlicht:
23. April 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Mariana Moscovich, Camila Henriques de Aquino, Murilo Martinez Marinho, Lorena Broseghini Barcelos, André C. Felício, Matthew Halverson, Clement Hamani, Henrique Ballalai Ferraz, Renato Puppi Munhoz. Fundamentals of deep brain stimulation for Parkinson's disease in clinical practice: part 2. Arq Neuropsiquiatr 2024; 82: s00441786037.
DOI: 10.1055/s-0044-1786037
-
References
- 1 Strauss I, Kalia SK, Lozano AM. Where are we with surgical therapies for Parkinson's disease?. Parkinsonism Relat Disord 2014; 20 (Suppl. 01) S187-S191
- 2 Vedam-Mai V, Deisseroth K, Giordano J. et al. Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: Advances in Optogenetics, Ethical Issues Affecting DBS Research, Neuromodulatory Approaches for Depression, Adaptive Neurostimulation, and Emerging DBS Technologies. Front Hum Neurosci. 2021;15:644593.
- 3 Khan S, Mooney L, Plaha P. et al. Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson's disease. Br J Neurosurg 2011; 25 (02) 273-280
- 4 Stefani A, Lozano AM, Peppe A. et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 2007; 130 (Pt 6): 1596-1607
- 5 Khan S, Javed S, Mooney L. et al. Clinical outcomes from bilateral versus unilateral stimulation of the pedunculopontine nucleus with and without concomitant caudal zona incerta region stimulation in Parkinson's disease. Br J Neurosurg 2012; 26 (05) 722-725
- 6 Weiss D, Walach M, Meisner C. et al. Nigral stimulation for resistant axial motor impairment in Parkinson's disease? A randomized controlled trial. Brain 2013; 136 (Pt 7): 2098-2108
- 7 Bronstein JM, Tagliati M, Alterman RL. et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. In: Vol 68. 2011: 165
- 8 Follett KA, Torres-Russotto D. Deep brain stimulation of globus pallidus interna, subthalamic nucleus, and pedunculopontine nucleus for Parkinson's disease: which target?. Parkinsonism Relat Disord 2012; 18 (Suppl. 01) S165-S167
- 9 Lukins TR, Tisch S, Jonker B. The latest evidence on target selection in deep brain stimulation for Parkinson's disease. J Clin Neurosci 2014; 21 (01) 22-27
- 10 Hariz MI, Rehncrona S, Quinn NP, Speelman JD, Wensing C. Multicentre Advanced Parkinson's Disease Deep Brain Stimulation Group. Multicenter study on deep brain stimulation in Parkinson's disease: an independent assessment of reported adverse events at 4 years. Mov Disord 2008; 23 (03) 416-421
- 11 Mansouri A, Taslimi S, Badhiwala JH. et al. Deep brain stimulation for Parkinson's disease: meta-analysis of results of randomized trials at varying lengths of follow-up. J Neurosurg 2018; 128 (04) 1199-1213
- 12 Munhoz RP, Cerasa A, Okun MS. Surgical treatment of dyskinesia in Parkinson's disease. Front Neurol 2014; 5: 65
- 13 Odekerken VJJ, van Laar T, Staal MJ. et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 2013; 12 (01) 37-44
- 14 Odekerken VJJ, Boel JA, Schmand BA. et al; NSTAPS study group. GPi vs STN deep brain stimulation for Parkinson disease: Three-year follow-up. Neurology 2016; 86 (08) 755-761
- 15 Okun MS, Fernandez HH, Wu SS. et al. Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 2009; 65 (05) 586-595
- 16 O'Sullivan D, Pell M. Long-term follow-up of DBS of thalamus for tremor and STN for Parkinson's disease. Brain Res Bull 2009; 78 (2-3): 119-121
- 17 Follett KA, Weaver FM, Stern M. et al; CSP 468 Study Group. Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. N Engl J Med 2010; 362 (22) 2077-2091
- 18 Benabid AL, Pollak P, Gervason C. et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 1991; 337 (8738): 403-406
- 19 Limousin P, Speelman JD, Gielen F, Janssens M. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 1999; 66 (03) 289-296
- 20 Nowacki A, Galati S, Ai-Schlaeppi J, Bassetti C, Kaelin A, Pollo C. Pedunculopontine nucleus: An integrative view with implications on Deep Brain Stimulation. Neurobiol Dis 2019; 128: 75-85
- 21 Blomstedt P, Fytagoridis A, Åström M, Linder J, Forsgren L, Hariz MI. Unilateral caudal zona incerta deep brain stimulation for Parkinsonian tremor. Parkinsonism Relat Disord 2012; 18 (10) 1062-1066
- 22 Blomstedt P, Stenmark Persson R, Hariz G-M. et al. Deep brain stimulation in the caudal zona incerta versus best medical treatment in patients with Parkinson's disease: a randomised blinded evaluation. J Neurol Neurosurg Psychiatry 2018; 89 (07) 710-716
- 23 Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 2006; 129 (Pt 7): 1732-1747
- 24 Gratwicke J, Zrinzo L, Kahan J. et al. Bilateral Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia: A Randomized Clinical Trial. JAMA Neurol 2018; 75 (02) 169-178
- 25 Sasikumar S, Cohn M, Harmsen IE. et al. Single-Trajectory Multiple-Target Deep Brain Stimulation for Parkinsonian Mobility and Cognition. Mov Disord 2022; 37 (03) 635-640
- 26 Caparros-Lefebvre D, Blond S, Feltin MP, Pollak P, Benabid AL. Improvement of levodopa induced dyskinesias by thalamic deep brain stimulation is related to slight variation in electrode placement: possible involvement of the centre median and parafascicularis complex. J Neurol Neurosurg Psychiatry 1999; 67 (03) 308-314
- 27 Fonoff ET, de Lima-Pardini AC, Coelho DB. et al. Spinal Cord Stimulation for Freezing of Gait: From Bench to Bedside. Front Neurol 2019; 10: 905
- 28 Brown P, Oliviero A, Mazzone P, Insola A. Dopamine Dependency of Oscillations between Subthalamic Nucleus and Pallidum in Parkinson's Disease. The Journal of …. January 2001; 1-6 http://www.jneurosci.org/content/21/3/1033.short
- 29 Özkurt TE, Butz M, Homburger M. et al. High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson's disease. Exp Neurol 2011; 229 (02) 324-331
- 30 Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain 2002; 125 (Pt 6): 1196-1209
- 31 Weinberger M, Mahant N, Hutchison WD. et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease. J Neurophysiol 2006; 96 (06) 3248-3256
- 32 Kühn AA, Kempf F, Brücke C. et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J Neurosci 2008; 28 (24) 6165-6173
- 33 Alonso-Frech F, Zamarbide I, Alegre M. et al. Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson's disease. Brain 2006; 129 (Pt 7): 1748-1757
- 34 Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease. Mov Disord 2003; 18 (04) 357-363
- 35 Ashkan K, Rogers P, Bergman H, Ughratdar I. Insights into the mechanisms of deep brain stimulation. Nat Rev Neurol 2017; 13 (09) 548-554
- 36 Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in Parkinson's disease. Mov Disord 2006; 21 (Suppl. 14) S284-S289
- 37 Munhoz RP, Albuainain G. Deep brain stimulation: new programming algorithms and teleprogramming. Expert Rev Neurother 2023; 23 (05) 467-478 Epub ahead of print
- 38 Picillo M, Lozano AM, Kou N, Puppi Munhoz R, Fasano A. Programming Deep Brain Stimulation for Parkinson's Disease: The Toronto Western Hospital Algorithms. Brain Stimul 2016; 9 (03) 425-437
- 39 Sriram A, Foote KD, Oyama G, Kwak J, Zeilman PR, Okun MS. Brittle Dyskinesia Following STN but not GPi Deep Brain Stimulation. Tremor Other Hyperkinet Mov (N Y) 2014; 4: 242
- 40 Castrioto A, Lhommée E, Moro E, Krack P. Mood and behavioural effects of subthalamic stimulation in Parkinson's disease. Lancet Neurol 2014; 13 (03) 287-305
- 41 Thobois S, Ardouin C, Lhommée E. et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson's disease: predictors and underlying mesolimbic denervation. Brain 2010; 133 (Pt 4): 1111-1127
- 42 Thobois S, Lhommée E, Klinger H. et al. Parkinsonian apathy responds to dopaminergic stimulation of D2/D3 receptors with piribedil. Brain 2013; 136 (Pt 5): 1568-1577
- 43 Voon V, Krack P, Lang AE. et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson's disease. Brain 2008; 131 (Pt 10): 2720-2728
- 44 Welter M-L, Schüpbach M, Czernecki V. et al. Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology 2014; 82 (15) 1352-1361
- 45 Contarino MF, Bour LJ, Verhagen R. et al. Directional steering: A novel approach to deep brain stimulation. Neurology 2014; 83 (13) 1163-1169
- 46 Pollo C, Kaelin-Lang A, Oertel MF. et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain 2014; 137 (Pt 7): 2015-2026
- 47 Rosin B, Slovik M, Mitelman R. et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 2011; 72 (02) 370-384
- 48 Little S, Tripoliti E, Beudel M. et al. Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry 2016; 87 (12) 1388-1389
- 49 Little S, Brown P. Debugging Adaptive Deep Brain Stimulation for Parkinson's Disease. Mov Disord 2020; 35 (04) 555-561
- 50 Miocinovic S, Khemani P, Whiddon R. et al. Outcomes, management, and potential mechanisms of interleaving deep brain stimulation settings. Parkinsonism Relat Disord 2014; 20 (12) 1434-1437
- 51 Zhang S, Zhou P, Jiang S, Wang W, Li P. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease: A report of 12 cases. Medicine (Baltimore) 2016; 95 (49) e5575
- 52 Kern DS, Picillo M, Thompson JA. et al. Interleaving Stimulation in Parkinson's Disease, Tremor, and Dystonia. Stereotact Funct Neurosurg 2018; 96 (06) 379-391
- 53 Aquino CC, Duffley G, Hedges DM. et al. Interleaved deep brain stimulation for dyskinesia management in Parkinson's disease. Mov Disord 2019; 34 (11) 1722-1727
- 54 Matias CM, Frizon LA, Nagel SJ, Lobel DA, Machado AG. Deep brain stimulation outcomes in patients implanted under general anesthesia with frame-based stereotaxy and intraoperative MRI. J Neurosurg 2018; 129 (06) 1572-1578
- 55 Martin AJ, Larson PS, Ostrem JL, Starr PA. Interventional magnetic resonance guidance of deep brain stimulator implantation for Parkinson disease. Top Magn Reson Imaging 2009; 19 (04) 213-221
- 56 Rahmathulla G, Recinos PF, Traul DE. et al. Surgical briefings, checklists, and the creation of an environment of safety in the neurosurgical intraoperative magnetic resonance imaging suite. Neurosurg Focus 2012; 33 (05) E12
- 57 Chen T, Mirzadeh Z, Chapple K, Lambert M, Dhall R, Ponce FA. “Asleep” deep brain stimulation for essential tremor. J Neurosurg 2016; 124 (06) 1842-1849
- 58 Saleh S, Swanson KI, Lake WB, Sillay KA. Awake Neurophysiologically Guided versus Asleep MRI-Guided STN DBS for Parkinson Disease: A Comparison of Outcomes Using Levodopa Equivalents. Stereotact Funct Neurosurg 2015; 93 (06) 419-426
- 59 Nakajima T, Zrinzo L, Foltynie T. et al. MRI-guided subthalamic nucleus deep brain stimulation without microelectrode recording: can we dispense with surgery under local anaesthesia?. Stereotact Funct Neurosurg 2011; 89 (05) 318-325
- 60 Chen T, Mirzadeh Z, Chapple K, Lambert M, Ponce FA. Complication rates, lengths of stay, and readmission rates in “awake” and “asleep” deep brain simulation. J Neurosurg 2017; 127 (02) 360-369
- 61 Ho AL, Ali R, Connolly ID. et al. Awake versus asleep deep brain stimulation for Parkinson's disease: a critical comparison and meta-analysis. J Neurol Neurosurg Psychiatry 2018; 89 (07) 687-691
- 62 Jagannathan J, Sanghvi NK, Crum LA, Yen CP. Ricky Medel, Aaron S Dumont, Sheehan JP, Steiner L, Jolesz F, Kassell NF. High intensity focused ultrasound surgery (HIFU) of the brain: A historical perspective, with modern applications. Neurosurgery 2009; 64 (02) 201-211
- 63 Schlesinger I, Eran A, Sinai A. et al. MRI Guided Focused Ultrasound Thalamotomy for Moderate-to-Severe Tremor in Parkinson's Disease. Parkinsons Dis 2015; 2015: 219149
- 64 Zaaroor M, Sinai A, Goldsher D, Eran A, Nassar M, Schlesinger I. Magnetic resonance-guided focused ultrasound thalamotomy for tremor: a report of 30 Parkinson's disease and essential tremor cases. J Neurosurg 2018; 128 (01) 202-210
- 65 Fasano A, Llinas M, Munhoz RP, Hlasny E, Kucharczyk W, Lozano AM. MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes. Neurology 2017; 89 (08) 771-775
- 66 Bond AE, Shah BB, Huss DS. et al. Safety and Efficacy of Focused Ultrasound Thalamotomy for Patients With Medication-Refractory, Tremor-Dominant Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol 2017; 74 (12) 1412-1418
- 67 Na YC, Chang WS, Jung HH, Kweon EJ, Chang JW. Unilateral magnetic resonance-guided focused ultrasound pallidotomy for Parkinson disease. Neurology 2015; 85 (06) 549-551
- 68 Martínez-Fernández R, Máñez-Miró JU, Rodríguez-Rojas R. et al. Randomized trial of focused ultrasound subthalamotomy for Parkinson's disease. N Engl J Med 2020; 383 (26) 2501-2513
- 69 Jung NY, Park CK, Kim M, Lee PH, Sohn YH, Chang JW. The efficacy and limits of magnetic resonance-guided focused ultrasound pallidotomy for Parkinson's disease: a Phase I clinical trial. J Neurosurg 2018; •••: 1-9
- 70 Martínez-Fernández R, Rodríguez-Rojas R, Del Álamo M. et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson's disease: a pilot study. Lancet Neurol 2018; 17 (01) 54-63