Subscribe to RSS
DOI: 10.1055/s-0044-1786151
The Immature Pediatric Appendicular Skeleton
Abstract
Growth and maturation occur in a predictable pattern throughout the body and within each individual bone. In the appendicular skeleton, endochondral ossification predominates in long bones and growth plates. The ends of these long bones are sites of relative weakness in the immature skeleton and prone to injury from acute insult and overuse. We present the normal histoanatomy and physiology of the growth plate complex, highlighting the unique contribution of each component and shared similarities between primary and secondary complexes. Components of the growth plate complex include the physis proper, subjacent vascularity within the growth cartilage, and the ossification front. The second section describes imaging considerations and features of normal and abnormal growth. Finally, we review the Salter-Harris classification for acute fractures and offer examples of characteristic overuse injury patterns involving the epiphyseal (proximal humerus and distal radius), apophyseal (medial epicondyle and tibial tubercle), and secondary growth plate complexes (medial femoral condyle and capitellar osteochondritis dissecans). This article provides a foundation and basic framework to better understand and anticipate potential complications and growth disturbances and to ensure optimal follow-up and early intervention when treatment can be less invasive.
Publication History
Article published online:
29 July 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Oestreich AE. The acrophysis: a unifying concept for understanding enchondral bone growth and its disorders. II. Abnormal growth. Skeletal Radiol 2004; 33 (03) 119-128
- 2 Laor T, Jaramillo D. MR imaging insights into skeletal maturation: what is normal?. Radiology 2009; 250 (01) 28-38
- 3 Iannotti JP. Growth plate physiology and pathology. Orthop Clin North Am 1990; 21 (01) 1-17
- 4 Brighton CT. The growth plate. Orthop Clin North Am 1984; 15 (04) 571-595
- 5 Rivas R, Shapiro F. Structural stages in the development of the long bones and epiphyses: a study in the New Zealand white rabbit. J Bone Joint Surg Am 2002; 84 (01) 85-100
- 6 Nguyen JC, Markhardt BK, Merrow AC, Dwek JR. Imaging of pediatric growth plate disturbances. Radiographics 2017; 37 (06) 1791-1812
- 7 Caine DJ, Golightly YM. Osteoarthritis as an outcome of paediatric sport: an epidemiological perspective. Br J Sports Med 2011; Apr; 45 (04) 298-303
- 8 Caine D, Maffulli N, Meyers R, Schöffl V, Nguyen J. Inconsistencies and imprecision in the nomenclature used to describe primary periphyseal stress injuries: towards a better understanding. Sports Med 2022; 52 (04) 685-707
- 9 Blumer MJ, Longato S, Fritsch H. Structure, formation and role of cartilage canals in the developing bone. Ann Anat 2008; 190 (04) 305-315
- 10 Byers S, Moore AJ, Byard RW, Fazzalari NL. Quantitative histomorphometric analysis of the human growth plate from birth to adolescence. Bone 2000; 27 (04) 495-501
- 11 Nguyen JC, Lee KS, Thapa MM, Rosas HG. US evaluation of juvenile idiopathic arthritis and osteoarticular infection. Radiographics 2017; 37 (04) 1181-1201
- 12 Ogden JA. Injury to the growth mechanisms of the immature skeleton. Skeletal Radiol 1981; 6 (04) 237-253
- 13 Jaimes C, Jimenez M, Marin D, Ho-Fung V, Jaramillo D. The trochlear pre-ossification center: a normal developmental stage and potential pitfall on MR images. Pediatr Radiol 2012; 42 (11) 1364-1371
- 14 Aoyama JT, Maier P, Servaes S. et al. MR imaging of the shoulder in youth baseball players: anatomy, pathophysiology, and treatment. Clin Imaging 2019; 57: 99-109
- 15 Tomsan H, Grady MF, Ganley TJ, Nguyen JC. Pediatric elbow: development, common pathologies, and imaging considerations. Semin Roentgenol 2021; 56 (03) 245-265
- 16 Ecklund K, Jaramillo D. Patterns of premature physeal arrest: MR imaging of 111 children. AJR Am J Roentgenol 2002; 178 (04) 967-972
- 17 Jaramillo D, Laor T, Hoffer FA. et al. Epiphyseal marrow in infancy: MR imaging. Radiology 1991; 180 (03) 809-812
- 18 Jaramillo D, Kammen BF, Shapiro F. Cartilaginous path of physeal fracture-separations: evaluation with MR imaging—an experimental study with histologic correlation in rabbits. Radiology 2000; 215 (02) 504-511
- 19 Rogers LF, Poznanski AK. Imaging of epiphyseal injuries. Radiology 1994; 191 (02) 297-308
- 20 Jaramillo D, Shapiro F. Growth cartilage: normal appearance, variants and abnormalities. Magn Reson Imaging Clin N Am 1998; 6 (03) 455-471
- 21 Thapa MM, Iyer RS, Khanna PC, Chew FS. MRI of pediatric patients: Part 1, normal and abnormal cartilage. AJR Am J Roentgenol 2012; 198 (05) W450-W455
- 22 Borsa JJ, Peterson HA, Ehman RL. MR imaging of physeal bars. Radiology 1996; 199 (03) 683-687
- 23 Sailhan F, Chotel F, Guibal AL. et al. Three-dimensional MR imaging in the assessment of physeal growth arrest. Eur Radiol 2004; 14 (09) 1600-1608
- 24 Smith BG, Rand F, Jaramillo D, Shapiro F. Early MR imaging of lower-extremity physeal fracture-separations: a preliminary report. J Pediatr Orthop 1994; 14 (04) 526-533
- 25 Gabel GT, Peterson HA, Berquist TH. Premature partial physeal arrest. Diagnosis by magnetic resonance imaging in two cases. Clin Orthop Relat Res 1991; (272) 242-247
- 26 Jaramillo D, Hoffer FA, Shapiro F, Rand F. MR imaging of fractures of the growth plate. AJR Am J Roentgenol 1990; 155 (06) 1261-1265
- 27 Lohman M, Kivisaari A, Vehmas T, Kallio P, Puntila J, Kivisaari L. MRI in the assessment of growth arrest. Pediatr Radiol 2002; 32 (01) 41-45
- 28 Zbojniewicz AM, Laor T. Focal periphyseal edema (FOPE) zone on MRI of the adolescent knee: a potentially painful manifestation of physiologic physeal fusion?. AJR Am J Roentgenol 2011; 197 (04) 998-1004
- 29 Chan BY, Gill KG, Rebsamen SL, Nguyen JC. MR imaging of pediatric bone marrow. Radiographics 2016; 36 (06) 1911-1930
- 30 Larson RL, McMahan RO. The epiphyses and the childhood athlete. JAMA 1966; 196 (07) 607-612
- 31 Caine D, DiFiori J, Maffulli N. Physeal injuries in children's and youth sports: reasons for concern?. Br J Sports Med 2006; 40 (09) 749-760
- 32 Flachsmann R, Broom ND, Hardy AE, Moltschaniwskyj G. Why is the adolescent joint particularly susceptible to osteochondral shear fracture?. Clin Orthop Relat Res 2000; (381) 212-221
- 33 Bailey DA, Wedge JH, McCulloch RG, Martin AD, Bernhardson SC. Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg Am 1989; 71 (08) 1225-1231
- 34 Nguyen JC, Lin B, Potter HG. Maturation-dependent findings in the shoulders of pediatric baseball players on magnetic resonance imaging. Skeletal Radiol 2019; 48 (07) 1087-1094
- 35 Alexander CJ. Effect of growth rate on the strength of the growth plate-shaft junction. Skeletal Radiol 1976; 1 (02) 67-76
- 36 Xie M, Gol'din P, Herdina AN. et al. Secondary ossification center induces and protects growth plate structure. eLife 2020; 9: 9
- 37 DiFiori JP, Benjamin HJ, Brenner JS. et al. Overuse injuries and burnout in youth sports: a position statement from the American Medical Society for Sports Medicine. Br J Sports Med 2014; 48 (04) 287-288
- 38 Trueta J, Amato VP. The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg Br 1960; 42-B: 571-587
- 39 Laor T, Wall EJ, Vu LP. Physeal widening in the knee due to stress injury in child athletes. AJR Am J Roentgenol 2006; 186 (05) 1260-1264
- 40 Laor T, Hartman AL, Jaramillo D. Local physeal widening on MR imaging: an incidental finding suggesting prior metaphyseal insult. Pediatr Radiol 1997; 27 (08) 654-662
- 41 Caine D, Meyers R, Nguyen J, Schöffl V, Maffulli N. Primary periphyseal stress injuries in young athletes: a systematic review. Sports Med 2022; 52 (04) 741-772
- 42 Anderson M, Green WT, Messner MB. Growth and predictions of growth in the lower extremities. J Bone Joint Surg Am 1963; 45-A: 1-14
- 43 Beaty JH, Kumar A. Fractures about the knee in children. J Bone Joint Surg Am 1994; 76 (12) 1870-1880
- 44 Allen H, Davis KW, Noonan K, Endo Y, Nguyen JC. Orthopaedic fixation devices used in children: a radiologist's guide. Semin Musculoskelet Radiol 2018; 22 (01) 12-24
- 45 Sabick MB, Kim YK, Torry MR, Keirns MA, Hawkins RJ. Biomechanics of the shoulder in youth baseball pitchers: implications for the development of proximal humeral epiphysiolysis and humeral retrotorsion. Am J Sports Med 2005; 33 (11) 1716-1722
- 46 Heyworth BE, Kramer DE, Martin DJ, Micheli LJ, Kocher MS, Bae DS. Trends in the presentation, management, and outcomes of Little League shoulder. Am J Sports Med 2016; 44 (06) 1431-1438
- 47 Lin DJ, Wong TT, Kazam JK. Shoulder injuries in the overhead-throwing athlete: epidemiology, mechanisms of injury, and imaging findings. Radiology 2018; 286 (02) 370-387
- 48 Albanese SA, Palmer AK, Kerr DR, Carpenter CW, Lisi D, Levinsohn EM. Wrist pain and distal growth plate closure of the radius in gymnasts. J Pediatr Orthop 1989; 9 (01) 23-28
- 49 Caine D, Roy S, Singer KM, Broekhoff J. Stress changes of the distal radial growth plate. A radiographic survey and review of the literature. Am J Sports Med 1992; 20 (03) 290-298
- 50 Jaramillo D, Laor T, Zaleske DJ. Indirect trauma to the growth plate: results of MR imaging after epiphyseal and metaphyseal injury in rabbits. Radiology 1993; 187 (01) 171-178
- 51 Vender MI, Watson HK. Acquired Madelung-like deformity in a gymnast. J Hand Surg Am 1988; 13 (01) 19-21
- 52 DiFiori JP, Puffer JC, Mandelbaum BR, Dorey F. Distal radial growth plate injury and positive ulnar variance in nonelite gymnasts. Am J Sports Med 1997; 25 (06) 763-768
- 53 Longo UG, Ciuffreda M, Locher J, Maffulli N, Denaro V. Apophyseal injuries in children's and youth sports. Br Med Bull 2016; 120 (01) 139-159
- 54 Tariq SM, Patel V, Gendler L. et al. Pediatric thrower's elbow: maturation-dependent MRI findings in symptomatic baseball players. Pediatr Radiol 2023
- 55 Hodge C, Schroeder JD. Medial Epicondyle Apophysitis (Little League Elbow). StatPearls; Available at: https://www.ncbi.nlm.nih.gov/books/NBK570592/ Accessed April 1, 2024
- 56 Hang DW, Chao CM, Hang YS. A clinical and roentgenographic study of Little League elbow. Am J Sports Med 2004; 32 (01) 79-84
- 57 Kim HH, Gauguet JM. Pediatric elbow injuries. Semin Ultrasound CT MR 2018; 39 (04) 384-396
- 58 Jacoby SM, Herman MJ, Morrison WB, Osterman AL. Pediatric elbow trauma: an orthopaedic perspective on the importance of radiographic interpretation. Semin Musculoskelet Radiol 2007; 11 (01) 48-56
- 59 Cole III WW, Brown SM, Vopat B, Heard WMR, Mulcahey MK. Epidemiology, diagnosis, and management of tibial tubercle avulsion fractures in adolescents. JBJS Rev 2020; 8 (04) e0186
- 60 Kushner RL, Massey P. Tibial Tubercle Avulsion. StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK544275/ Accessed April 1, 2024
- 61 Pretell-Mazzini J, Kelly DM, Sawyer JR. et al. Outcomes and complications of tibial tubercle fractures in pediatric patients: a systematic review of the literature. J Pediatr Orthop 2016; 36 (05) 440-446
- 62 Kalifis G, Marin Fermin T, Seil R, Hobson S, Papakostas E, Hantes M. Tibial tubercle fractures are sports injuries in male adolescents with a considerable risk of complications and reoperations: a systematic review. Knee Surg Sports Traumatol Arthrosc 2023; 31 (07) 2624-2634
- 63 Ladenhauf HN, Seitlinger G, Green DW. Osgood-Schlatter disease: a 2020 update of a common knee condition in children. Curr Opin Pediatr 2020; 32 (01) 107-112
- 64 Laor T, Zbojniewicz AM, Eismann EA, Wall EJ. Juvenile osteochondritis dissecans: is it a growth disturbance of the secondary physis of the epiphysis?. AJR Am J Roentgenol 2012; 199 (05) 1121-1128
- 65 Crawford DC, Safran MR. Osteochondritis dissecans of the knee. J Am Acad Orthop Surg 2006; 14 (02) 90-100
- 66 Eismann EA, Pettit RJ, Wall EJ, Myer GD. Management strategies for osteochondritis dissecans of the knee in the skeletally immature athlete. J Orthop Sports Phys Ther 2014; 44 (09) 665-679
- 67 Krause M, Hapfelmeier A, Möller M, Amling M, Bohndorf K, Meenen NM. Healing predictors of stable juvenile osteochondritis dissecans knee lesions after 6 and 12 months of nonoperative treatment. Am J Sports Med 2013; 41 (10) 2384-2391
- 68 Hughes JA, Cook JV, Churchill MA, Warren ME. Juvenile osteochondritis dissecans: a 5-year review of the natural history using clinical and MRI evaluation. Pediatr Radiol 2003; 33 (06) 410-417
- 69 Samora WP, Chevillet J, Adler B, Young GS, Klingele KE. Juvenile osteochondritis dissecans of the knee: predictors of lesion stability. J Pediatr Orthop 2012; 32 (01) 1-4
- 70 Nguyen JC, Liu F, Blankenbaker DG, Woo KM, Kijowski R. Juvenile osteochondritis dissecans: cartilage T2 mapping of stable medial femoral condyle lesions. Radiology 2018; 288 (02) 536-543
- 71 O'Connor MA, Palaniappan M, Khan N, Bruce CE. Osteochondritis dissecans of the knee in children. A comparison of MRI and arthroscopic findings. J Bone Joint Surg Br 2002; 84 (02) 258-262
- 72 Kijowski R, Blankenbaker DG, Shinki K, Fine JP, Graf BK, De Smet AA. Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology 2008; 248 (02) 571-578
- 73 Carey JL, Wall EJ, Grimm NL. et al; Research in OsteoChondritis of the Knee (ROCK) Group. Novel arthroscopic classification of osteochondritis dissecans of the knee: a multicenter reliability study. Am J Sports Med 2016; 44 (07) 1694-1698
- 74 Turati M, Anghilieri FM, Bigoni M. et al. Osteochondritis dissecans of the knee: epidemiology, etiology, and natural history. J Child Orthop 2023; 17 (01) 40-46
- 75 Logli AL, Bernard CD, O'Driscoll SW. et al. Osteochondritis dissecans lesions of the capitellum in overhead athletes: a review of current evidence and proposed treatment algorithm. Curr Rev Musculoskelet Med 2019; 12 (01) 1-12
- 76 Kajiyama S, Muroi S, Sugaya H. et al. Osteochondritis dissecans of the humeral capitellum in young athletes: comparison between baseball players and gymnasts. Orthop J Sports Med 2017; 5 (03) 2325967117692513
- 77 Ellermann J, Johnson CP, Wang L, Macalena JA, Nelson BJ, LaPrade RF. Insights into the epiphyseal cartilage origin and subsequent osseous manifestation of juvenile osteochondritis dissecans with a modified clinical MR imaging protocol: a pilot study. Radiology 2017; 282 (03) 798-806
- 78 Uozumi H, Sugita T, Aizawa T, Takahashi A, Ohnuma M, Itoi E. Histologic findings and possible causes of osteochondritis dissecans of the knee. Am J Sports Med 2009; 37 (10) 2003-2008
- 79 Chau MM, Klimstra MA, Wise KL. et al. Osteochondritis dissecans: current understanding of epidemiology, etiology, management, and outcomes. J Bone Joint Surg Am 2021; 103 (12) 1132-1151
- 80 Matsui Y, Funakoshi T, Momma D. et al. Variation in stress distribution patterns across the radial head fovea in osteochondritis dissecans: predictive factors in radiographic findings. J Shoulder Elbow Surg 2018; 27 (05) 923-930
- 81 Singer KM, Roy SP. Osteochondrosis of the humeral capitellum. Am J Sports Med 1984; 12 (05) 351-360
- 82 Nguyen JC, Degnan AJ, Barrera CA, Hee TP, Ganley TJ, Kijowski R. Osteochondritis dissecans of the elbow in children: MRI findings of instability. AJR Am J Roentgenol 2019; 213 (05) 1145-1151
- 83 Nguyen JC, Caine D. Youth soccer players: patterns of injury involving the primary growth plates of epiphyses. Skeletal Radiol 2024 Jan 4. . Epub ahead of print. PMID: 38175258.