Subscribe to RSS
DOI: 10.1055/s-0044-1786152
Imaging of the Pediatric Knee

Abstract
During normal development, imaging findings in the immature knee joint may mimic pathology or indicate transient sites of weakness, prone to injury. This article reviews the development of the knee joint, age- and maturation-dependent imaging considerations, and various developmental variants that can be encountered, subdivided into those that involve the tibiofemoral and patellofemoral compartments, soft tissues, and osseous components. The tibiofemoral compartment section reviews the focal periphyseal edema zone (FOPE), ossification variants of the femoral condyles, distal femoral metaphyseal cortical irregularity from periosteal traction, and the metaphyseal subperiosteal stripe, which should be distinguished from pathologic mimickers such as endochondral ossification dysfunction, osteochondritis dissecans (OCD), fibroosseous lesion, periosteal and subcortical pathologies. The patellofemoral compartment section includes a review of partite patella, dorsolateral defect, variant trochlear morphology, and maturation-dependent sites of transient weakness that are prone to injury from repetitive overuse (Sinding-Larsen-Johansson syndrome and Osgood-Schlatter disease) and avulsion fractures (patellar sleeve and tibial tubercle avulsions). Finally, soft tissue (discoid lateral meniscus, meniscal flounce, anterior cruciate ligament variants) and osseous components (meniscal ossicle, fabella, and cyamella) are reviewed.
Publication History
Article published online:
29 July 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Caine D, Meyers R, Nguyen J, Schöffl V, Maffulli N. Primary periphyseal stress injuries in young athletes: a systematic review. Sports Med 2022; 52 (04) 741-772
- 2 Berendsen AD, Olsen BR. Bone development. Bone 2015; 80: 14-18
- 3 Nguyen JC, Markhardt BK, Merrow AC, Dwek JR. Imaging of pediatric growth plate disturbances. Radiographics 2017; 37 (06) 1791-1812
- 4 Haines RW. The development of joints. J Anat 1947; 81 (01) 33-55
- 5 Shapiro F. Developmental disorders of the knee. In: Pediatric Orthopedic Deformities. Vol 2. Developmental Disorders of the Lower Extremity: Hip to Knee to Ankle and Foot. Cham, Switzerland: Springer; 2019: 473-604
- 6 Fox AJ, Wanivenhaus F, Rodeo SA. The basic science of the patella: structure, composition, and function. J Knee Surg 2012; 25 (02) 127-141
- 7 Rivas R, Shapiro F. Structural stages in the development of the long bones and epiphyses: a study in the New Zealand white rabbit. J Bone Joint Surg Am 2002; 84 (01) 85-100
- 8 Pennock AT, Bomar JD, Manning JD. The creation and validation of a knee bone age atlas utilizing MRI. J Bone Joint Surg Am 2018; 100 (04) e20
- 9 Bloom RA, Gomori J, Milgrom C. Ossicles anterior to the proximal tibia. Clin Imaging 1993; 17 (02) 137-141
- 10 Ağırdil Y. The growth plate: a physiologic overview. EFORT Open Rev 2020; 5 (08) 498-507
- 11 Harcke HT, Synder M, Caro PA, Bowen JR. Growth plate of the normal knee: evaluation with MR imaging. Radiology 1992; 183 (01) 119-123
- 12 Indiran V, Jagannathan D. Osgood-Schlatter disease. N Engl J Med 2018; 378 (11) e15
- 13 Moktassi A, Popkin CA, White LM, Murnaghan ML. Imaging of osteochondritis dissecans. Orthop Clin North Am 2012; 43 (02) 201-211 ; v–vi
- 14 Nguyen JC, Guariento A, Nicholson A. et al. Hand bone age radiography: comparison between slot-scanning and conventional techniques. J Pediatr Orthop 2021; 41 (02) e167-e173
- 15 Bellolio MF, Puls HA, Anderson JL. et al. Incidence of adverse events in paediatric procedural sedation in the emergency department: a systematic review and meta-analysis. BMJ Open 2016; 6 (06) e011384
- 16 Chan BY, Gill KG, Rebsamen SL, Nguyen JC. MR imaging of pediatric bone marrow. Radiographics 2016; 36 (06) 1911-1930
- 17 Nguyen JC, Lee KS, Thapa MM, Rosas HG. US evaluation of juvenile idiopathic arthritis and osteoarticular infection. Radiographics 2017; 37 (04) 1181-1201
- 18 Zbojniewicz AM, Laor T. Focal periphyseal edema (FOPE) zone on MRI of the adolescent knee: a potentially painful manifestation of physiologic physeal fusion?. AJR Am J Roentgenol 2011; 197 (04) 998-1004
- 19 Beaty JH, Kumar A. Fractures about the knee in children. J Bone Joint Surg Am 1994; 76 (12) 1870-1880
- 20 Jaramillo D, Duong P, Nguyen JC. et al. Diffusion tensor imaging of the knee to predict childhood growth. Radiology 2022; 303 (03) 655-663
- 21 Nguyen JC, Gendler L, Guariento A. et al. MRI findings of growth plate fractures of the knee: are there age- and fracture-dependent differences?. Skeletal Radiol 2023; 52 (07) 1321-1329
- 22 Basener CJ, Mehlman CT, DiPasquale TG. Growth disturbance after distal femoral growth plate fractures in children: a meta-analysis. J Orthop Trauma 2009; 23 (09) 663-667
- 23 Liu RW, Armstrong DG, Levine AD, Gilmore A, Thompson GH, Cooperman DR. An anatomic study of the distal femoral epiphysis. J Pediatr Orthop 2013; 33 (07) 743-749
- 24 Jaramillo D, Hoffer FA, Shapiro F, Rand F. MR imaging of fractures of the growth plate. AJR Am J Roentgenol 1990; 155 (06) 1261-1265
- 25 Laor T, Hartman AL, Jaramillo D. Local physeal widening on MR imaging: an incidental finding suggesting prior metaphyseal insult. Pediatr Radiol 1997; 27 (08) 654-662
- 26 Jans LB, Jaremko JL, Ditchfield M, Verstraete KL. Evolution of femoral condylar ossification at MR imaging: frequency and patient age distribution. Radiology 2011; 258 (03) 880-888
- 27 Gebarski K, Hernandez RJ. Stage-I osteochondritis dissecans versus normal variants of ossification in the knee in children. Pediatr Radiol 2005; 35 (09) 880-886
- 28 Jans LB, Jaremko JL, Ditchfield M, Huysse WC, Verstraete KL. MRI differentiates femoral condylar ossification evolution from osteochondritis dissecans. A new sign. Eur Radiol 2011; 21 (06) 1170-1179
- 29 Kijowski R, Blankenbaker DG, Shinki K, Fine JP, Graf BK, De Smet AA. Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology 2008; 248 (02) 571-578
- 30 Chambers HG, Shea KG, Carey JL. AAOS Clinical Practice Guideline: diagnosis and treatment of osteochondritis dissecans. J Am Acad Orthop Surg 2011; 19 (05) 307-309
- 31 Laor T, Zbojniewicz AM, Eismann EA, Wall EJ. Juvenile osteochondritis dissecans: is it a growth disturbance of the secondary physis of the epiphysis?. AJR Am J Roentgenol 2012; 199 (05) 1121-1128
- 32 Jaramillo D, Laor T, Hoffer FA. et al. Epiphyseal marrow in infancy: MR imaging. Radiology 1991; 180 (03) 809-812
- 33 Hall FM. Cortical desmoid: a misnomer?. AJR Am J Roentgenol 2011; 197 (04) 1022 ; author reply 1023
- 34 Vieira RL, Bencardino JT, Rosenberg ZS, Nomikos G. MRI features of cortical desmoid in acute knee trauma. AJR Am J Roentgenol 2011; 196 (02) 424-428
- 35 Baghdadi S, Nguyen JC, Arkader A. Nonossifying fibroma of the distal tibia: predictors of fracture and management algorithm. J Pediatr Orthop 2021; 41 (08) e671-e679
- 36 Laor T, Chun GF, Dardzinski BJ, Bean JA, Witte DP. Posterior distal femoral and proximal tibial metaphyseal stripes at MR imaging in children and young adults. Radiology 2002; 224 (03) 669-674
- 37 Oohashi Y. Developmental anomaly of ossification type patella partita. Knee Surg Sports Traumatol Arthrosc 2015; 23 (04) 1071-1076
- 38 Weaver JK. Bipartite patellae as a cause of disability in the athlete. Am J Sports Med 1977; 5 (04) 137-143
- 39 O'Brien J, Murphy C, Halpenny D, McNeill G, Torreggiani WC. Magnetic resonance imaging features of asymptomatic bipartite patella. Eur J Radiol 2011; 78 (03) 425-429
- 40 Lerisson H, Tillaux C, Boutry N. Radiographic/MR imaging correlation of the pediatric knee growth. Magn Reson Imaging Clin N Am 2019; 27 (04) 737-751
- 41 Weckström M, Parviainen M, Pihlajamäki HK. Excision of painful bipartite patella: good long-term outcome in young adults. Clin Orthop Relat Res 2008; 466 (11) 2848-2855
- 42 Kallini J, Micheli LJ, Miller PE, Kramer DE, Kocher MS, Heyworth BE. Operative treatment of bipartite patella in pediatric and adolescent athletes: a retrospective comparison with a nonoperatively treated cohort. Orthop J Sports Med 2021; 9 (01) 2325967120967125
- 43 Johnson JF, Brogdon BG. Dorsal effect of the patella: incidence and distribution. AJR Am J Roentgenol 1982; 139 (02) 339-340
- 44 van Holsbeeck M, Vandamme B, Marchal G, Martens M, Victor J, Baert AL. Dorsal defect of the patella: concept of its origin and relationship with bipartite and multipartite patella. Skeletal Radiol 1987; 16 (04) 304-311
- 45 Tyler P, Datir A, Saifuddin A. Magnetic resonance imaging of anatomical variations in the knee. Part 2: miscellaneous. Skeletal Radiol 2010; 39 (12) 1175-1186
- 46 Safran MR, McDonough P, Seeger L, Gold R, Oppenheim WL. Dorsal defect of the patella. J Pediatr Orthop 1994; 14 (05) 603-607
- 47 Watts RE, Gorbachova T, Fritz RC. et al. Patellar tracking: an old problem with new insights. Radiographics 2023; 43 (06) e220177
- 48 Bollier M, Fulkerson JP. The role of trochlear dysplasia in patellofemoral instability. J Am Acad Orthop Surg 2011; 19 (01) 8-16
- 49 Orellana KJ, Batley MG, Lawrence JTR, Nguyen JC, Williams BA. Radiographic evaluation of pediatric patients with patellofemoral instability. Curr Rev Musculoskelet Med 2022; 15 (05) 411-426
- 50 Maloney E, Stanescu AL, Ngo AV, Parisi MT, Iyer RS. The pediatric patella: normal development, anatomical variants and malformations, stability, imaging, and injury patterns. Semin Musculoskelet Radiol 2018; 22 (01) 81-94
- 51 Parikh SN, Rajdev N, Sun Q. The growth of trochlear dysplasia during adolescence. J Pediatr Orthop 2018; 38 (06) e318-e324
- 52 Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1994; 2 (01) 19-26
- 53 Stepanovich M, Bomar JD, Pennock AT. Are the current classifications and radiographic measurements for trochlear dysplasia appropriate in the skeletally immature patient?. Orthop J Sports Med 2016; 4 (10) 2325967116669490
- 54 Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology 2000; 216 (02) 582-585
- 55 Askenberger M, Janarv PM, Finnbogason T, Arendt EA. Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med 2017; 45 (01) 50-58
- 56 Tscholl PM, Wanivenhaus F, Fucentese SF. Conventional radiographs and magnetic resonance imaging for the analysis of trochlear dysplasia: the influence of selected levels on magnetic resonance imaging. Am J Sports Med 2017; 45 (05) 1059-1065
- 57 Peace KA, Lee JC, Healy J. Imaging the infrapatellar tendon in the elite athlete. Clin Radiol 2006; 61 (07) 570-578
- 58 Gottsegen CJ, Eyer BA, White EA, Learch TJ, Forrester D. Avulsion fractures of the knee: imaging findings and clinical significance. Radiographics 2008; 28 (06) 1755-1770
- 59 Ray JM, Hendrix J. Incidence, mechanism of injury, and treatment of fractures of the patella in children. J Trauma 1992; 32 (04) 464-467
- 60 Dai LY, Zhang WM. Fractures of the patella in children. Knee Surg Sports Traumatol Arthrosc 1999; 7 (04) 243-245
- 61 Hunt DM, Somashekar N. A review of sleeve fractures of the patella in children. Knee 2005; 12 (01) 3-7
- 62 Gao GX, Mahadev A, Lee EH. Sleeve fracture of the patella in children. J Orthop Surg (Hong Kong) 2008; 16 (01) 43-46
- 63 Bates DG, Hresko MT, Jaramillo D. Patellar sleeve fracture: demonstration with MR imaging. Radiology 1994; 193 (03) 825-827
- 64 Ogden JA, Hempton RJ, Southwick WO. Development of the tibial tuberosity. Anat Rec 1975; 182 (04) 431-445
- 65 Patel DR, Villalobos A. Evaluation and management of knee pain in young athletes: overuse injuries of the knee. Transl Pediatr 2017; 6 (03) 190-198
- 66 Lam JJH, Venkatesh SH, Ho CL, Wong BSS. Clinics in diagnostic imaging (202). Osgood-Schlatter disease (OSD). Singapore Med J 2019; 60 (12) 610-615
- 67 Christie MJ, Dvonch VM. Tibial tuberosity avulsion fracture in adolescents. J Pediatr Orthop 1981; 1 (04) 391-394
- 68 McKoy BE, Stanitski CL. Acute tibial tubercle avulsion fractures. Orthop Clin North Am 2003; 34 (03) 397-403
- 69 Ogden JA, Tross RB, Murphy MJ. Fractures of the tibial tuberosity in adolescents. J Bone Joint Surg Am 1980; 62 (02) 205-215
- 70 Nguyen JC, De Smet AA, Graf BK, Rosas HG. MR imaging-based diagnosis and classification of meniscal tears. Radiographics 2014; 34 (04) 981-999
- 71 Sun Y, Jiang Q. Review of discoid meniscus. Orthop Surg 2011; 3 (04) 219-223
- 72 Kim JG, Han SW, Lee DH. Diagnosis and treatment of discoid meniscus. Knee Surg Relat Res 2016; 28 (04) 255-262
- 73 Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am 1983; 65 (04) 538-547
- 74 Fukazawa I, Hatta T, Uchio Y, Otani H. Development of the meniscus of the knee joint in human fetuses. Congenit Anom (Kyoto) 2009; 49 (01) 27-32
- 75 Kim SJ, Moon SH, Shin SJ. Radiographic knee dimensions in discoid lateral meniscus: comparison with normal control. Arthroscopy 2000; 16 (05) 511-516
- 76 Choi SH, Ahn JH, Kim KI. et al. Do the radiographic findings of symptomatic discoid lateral meniscus in children differ from normal control subjects?. Knee Surg Sports Traumatol Arthrosc 2015; 23 (04) 1128-1134
- 77 Park YB, Ha CW, Jang JW, Kim M, Lee HJ, Park YG. Prediction models to improve the diagnostic value of plain radiographs in children with complete discoid lateral meniscus. Arthroscopy 2018; 34 (02) 479-489.e3
- 78 Silverman JM, Mink JH, Deutsch AL. Discoid menisci of the knee: MR imaging appearance. Radiology 1989; 173 (02) 351-354
- 79 Araki Y, Ashikaga R, Fujii K. et al. MR imaging of meniscal tears with discoid lateral meniscus. Eur J Radiol 1998; 27 (02) 153-160
- 80 Restrepo R, Weisberg MD, Pevsner R, Swirsky S, Lee EY. Discoid meniscus in the pediatric population: emphasis on MR imaging signs of instability. Magn Reson Imaging Clin N Am 2019; 27 (02) 323-339
- 81 Ahn JH, Lee YS, Ha HC, Shim JS, Lim KS. A novel magnetic resonance imaging classification of discoid lateral meniscus based on peripheral attachment. Am J Sports Med 2009; 37 (08) 1564-1569
- 82 Smuin DM, Swenson RD, Dhawan A. Saucerization versus complete resection of a symptomatic discoid lateral meniscus at short- and long-term follow-up: a systematic review. Arthroscopy 2017; 33 (09) 1733-1742
- 83 Mérida-Velasco JA, Sánchez-Montesinos I, Espín-Ferra J, Mérida-Velasco JR, Rodríguez-Vázquez JF, Jiménez-Collado J. Development of the human knee joint ligaments. Anat Rec 1997; 248 (02) 259-268
- 84 Manner HM, Radler C, Ganger R, Grill F. Dysplasia of the cruciate ligaments: radiographic assessment and classification. J Bone Joint Surg Am 2006; 88 (01) 130-137
- 85 Ohishi T, Suzuki D, Yamamoto K. et al. Meniscal pullout repair following meniscal ossicle resection: a case report. Knee 2013; 20 (01) 52-57
- 86 Zhou F, Zhang F, Deng G. et al. Fabella fracture with radiological imaging: a case report. Trauma Case Rep 2017; 12: 19-23
- 87 Dekker TJ, Crawford MD, DePhillipo NN. et al. Clinical presentation and outcomes associated with fabellectomy in the setting of fabella syndrome. Orthop J Sports Med 2020; 8 (02) 2325967120903722
- 88 Akansel G, Inan N, Sarisoy HT, Anik Y, Akansel S. Popliteus muscle sesamoid bone (cyamella): appearance on radiographs, CT and MRI. Surg Radiol Anat 2006; 28 (06) 642-645
- 89 Khanna V, Maldjian C. The cyamella, a lost sesamoid: normal variant or posterolateral corner anomaly?. Radiol Case Rep 2015; 9 (01) e00031