Semin Thromb Hemost
DOI: 10.1055/s-0044-1787190
Review Article

Gene Therapy for Hemophilia B: Achievements, Open Issues, and Perspectives

Giancarlo Castaman
1   Department of Oncology, Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy
,
Wolfgang Miesbach
2   Hemophilia Center of the Medical Clinic 2, University Hospital, Frankfurt/Main, Germany
› Author Affiliations

Abstract

Hemophilia B is the first bleeding disorder for which gene therapy clinical programs began. Presently, adenovirus-associated vectors represent the best means to deliver the transgene, and their administration by intravenous route has been used in recent clinical trials. The natural occurring factor IX (FIX) Padua variant, which allows for a 5- to 8-fold higher activity of FIX, while maintaining a normal protein concentration, was subsequently used to enhance the level of transgene expression. All the recent trials using this variant showed good results, and accumulating data suggest that long-term expression durability could be maintained at a significant hemostatic level. However, the risk of loss of transgene expression associated to immune response with liver enzymes elevation remains a concern, especially as to the efficacy and duration of immunosuppressive treatment. Notwithstanding this limitation, the results of clinical trials suggest that gene therapy in hemophilia B has the potential to provide long-term benefits with sustained factor activity levels predicted to last several years in many patients.

Authors' Contributions

G.C. and W.M. wrote the article.




Publication History

Article published online:
31 May 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Srivastava A, Santagostino E, Dougall A. et al. WFH guidelines for the management of hemophilia, 3rd edition. Haemophilia 2020; 26 (Suppl 6): 1-158
  • 2 Castaman G, Matino D. Hemophilia A and B: molecular and clinical similarities and differences. Haematologica 2019; 104 (09) 1702-1709
  • 3 Castaman G. The benefits of prophylaxis in patients with hemophilia B. Expert Rev Hematol 2018; 11 (08) 673-683
  • 4 Thornburg CD, Duncan NA. Treatment adherence in hemophilia. Patient Prefer Adherence 2017; 11: 1677-1686
  • 5 Burke T, Shaikh A, Ali TM. et al. Association of factor expression levels with annual bleeding rate in people with haemophilia B. Haemophilia 2023; 29 (01) 115-122
  • 6 Shapiro A, Potts J, Li S. et al. Association of bleeding tendency with time under target FIX activity levels in severe hemophilia B patients treated with recombinant factor IX Fc fusion protein. Blood 2013; 122: 2349-2349
  • 7 Schrijvers LH, Beijlevelt-van der Zande M, Peters M. et al. Adherence to prophylaxis and bleeding outcome in haemophilia: a multicentre study. Br J Haematol 2016; 174 (03) 454-460
  • 8 Gualtierotti R, Solimeno LP, Peyvandi F. Hemophilic arthropathy: current knowledge and future perspectives. J Thromb Haemost 2021; 19 (09) 2112-2121
  • 9 Miesbach W, von Drygalski A, Smith C. et al. The current challenges faced by people with hemophilia B. Eur J Haematol 2024; 112 (03) 339-349
  • 10 duTreil S. Physical and psychosocial challenges in adult hemophilia patients with inhibitors. J Blood Med 2014; 5: 115-122
  • 11 DiMichele D. Inhibitor development in haemophilia B: an orphan disease in need of attention. Br J Haematol 2007; 138 (03) 305-315
  • 12 Curtis R, Baker J, Riske B. et al. Young adults with hemophilia in the U.S.: demographics, comorbidities, and health status. Am J Hematol 2015; 90 (Suppl. 2) S11-S16
  • 13 Palareti L, Potì S, Cassis F, Emiliani F, Matino D, Iorio A. Shared topics on the experience of people with haemophilia living in the UK and the USA and the influence of individual and contextual variables: results from the HERO qualitative study. Int J Qual Stud Health Well-being 2015; 10: 28915
  • 14 Doshi BS, Arruda VR. Gene therapy for hemophilia: what does the future hold?. Ther Adv Hematol 2018; 9 (09) 273-293
  • 15 Perrin GQ, Herzog RW, Markusic DM. Update on clinical gene therapy for hemophilia. Blood 2019; 133 (05) 407-414
  • 16 Arruda VR, Doshi BS. Gene therapy for hemophilia: facts and quandaries in the 21st century. Mediterr J Hematol Infect Dis 2020; 12 (01) e2020069
  • 17 Mezzina M, Merten OW. Adeno-associated viruses. Methods Mol Biol 2011; 737: 211-234
  • 18 Schnepp BC, Chulay JD, Ye GJ, Flotte TR, Trapnell BC, Johnson PR. Recombinant adeno-associated virus vector genomes take the form of long-lived, transcriptionally competent episomes in human muscle. Hum Gene Ther 2016; 27 (01) 32-42
  • 19 Schnepp BC, Clark KR, Klemanski DL, Pacak CA, Johnson PR. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol 2003; 77 (06) 3495-3504
  • 20 Song S, Lu Y, Choi YK. et al. DNA-dependent PK inhibits adeno-associated virus DNA integration. Proc Natl Acad Sci U S A 2004; 101 (07) 2112-2116
  • 21 Berns KI. The unusual properties of the AAV inverted terminal repeat. Hum Gene Ther 2020; 31 (9-10): 518-523
  • 22 Li C, Samulski RJ, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21 (04) 255-272
  • 23 Smith JM, Grieger JC, Samulski RJ. Overcoming bottlenecks in AAV manufacturing for gene therapy. Cell Gene Ther Insights 2018; 4 (08) 815-827
  • 24 Xu L, Gao C, Sands MS. et al. Neonatal or hepatocyte growth factor-potentiated adult gene therapy with a retroviral vector results in therapeutic levels of canine factor IX for hemophilia B. Blood 2003; 101 (10) 3924-3932
  • 25 Miao CH, Ohashi K, Patijn GA. et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 2000; 1 (06) 522-532
  • 26 Choo KH, Gould KG, Rees DJ, Brownlee GG. Molecular cloning of the gene for human anti-haemophilic factor IX. Nature 1982; 299 (5879) 178-180
  • 27 Buchlis G, Podsakoff GM, Radu A. et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood 2012; 119 (13) 3038-3041
  • 28 Manno CS, Chew AJ, Hutchison S. et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101 (08) 2963-2972
  • 29 Manno CS, Pierce GF, Arruda VR. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12 (03) 342-347
  • 30 George LA, Ragni MV, Rasko JEJ. et al. Long-term follow-up of the first in human intravascular delivery of AAV for gene transfer: AAV2-hFIX16 for severe hemophilia B. Mol Ther 2020; 28 (09) 2073-2082
  • 31 Nathwani AC, Tuddenham EG, Rangarajan S. et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365 (25) 2357-2365
  • 32 Nathwani AC, Reiss U, Tuddenham E. et al. Adeno-associated mediated gene transfer for hemophilia B: 8 year follow up and impact of removing “empty viral particles” on safety and efficacy of gene transfer. Blood 2018; 132 (Suppl 1): 491
  • 33 Reiss UM, Davidoff AM, Tuddenham EGD. et al. Stable therapeutic transgenic FIX levels for more than 10 years in subjects with severe hemophilia B who received scAAV2/8–LP1-Hfixco adeno-associated virus gene therapy. Blood 2023; 142 (Suppl 1): 1056
  • 34 Miesbach W, Meijer K, Coppens M. et al. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B. Blood 2018; 131 (09) 1022-1031
  • 35 Boutin S, Monteilhet V, Veron P. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010; 21 (06) 704-712
  • 36 Miesbach W, Meijer K, Coppens M. et al. First report of a long-term follow-up extension study 6 years after gene therapy with AMT-060 in adults with hemophilia B confirms safety and stable FIX expression and sustained reductions in factor IX use. Haemophilia 2024; 1: 3
  • 37 Simioni P, Tormene D, Tognin G. et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med 2009; 361 (17) 1671-1675
  • 38 George LA, Sullivan SK, Rasko JE. et al. Efficacy and safety in 15 hemophilia B patients treated with the AAV gene therapy vector Fidanacogene Elaparvovec and followed for at least 1 year. Blood 2019; 134 (Suppl 1): 3347
  • 39 Chowdary P, Shapiro S, Davidoff AM. et al. A single intravenous infusion of FLT180a results in factor IX activity levels of more than 40% and has the potential to provide a functional cure for patients with haemophilia B. Blood 2018; 132 (Suppl. 01) 631-631
  • 40 Chowdary P, Shapiro S, Makris M. et al. Phase 1-2 trial of AAVS3 gene therapy in patients with hemophilia B. N Engl J Med 2022; 387 (03) 237-247
  • 41 Carvalho J. #ISTH2020 - FLT180a Gene Therapy Shows Promise for Hemophilia B Patients in Phase 1/2 Trial. Hemophilia News Today 2020. : Pensacola, FL.
  • 42 ISTH. A Novel Adeno Associated Virus (AAV) Gene Therapy (FLT180a) Achieves Normal FIX Activity Levels in Severe Hemophilia B (HB) Patients (B-AMAZE Study). ISTH Congress Daily News. 2020
  • 43 Von Drygalski A, Giermasz A, Castaman G. et al. Etranacogene dezaparvovec (AMT-061 phase 2b): normal/near normal FIX activity and bleed cessation in hemophilia B. Blood Adv 2019; 3 (21) 3241-3247
  • 44 von Drygalski A, Gomez E, Giermasz A. et al. Stable and durable factor IX levels in patients with hemophilia B over 3 years after etranacogene dezaparvovec gene therapy. Blood Adv 2023; 7 (19) 5671-5679
  • 45 Pipe SW, Leebeek FWG, Recht M. et al. Gene therapy with etranacogene dezaparvovec for hemophilia B. N Engl J Med 2023; 388 (08) 706-718
  • 46 Schmidt M, Foster GR, Coppens M. et al. Molecular evaluation and vector integration analysis of HCC complicating AAV gene therapy for hemophilia B. Blood Adv 2023; 7 (17) 4966-4969
  • 47 Castaman G. Gene transfer in hemophilia B: a big step forward. Bleed Thromb Vasc Biol 2023;2(02):
  • 48 CSL Behring. Prescribing Information – HEMGENIX. Accessed January 2023 at: https://www.fda.gov/media/163467/download
  • 49 George LA, Monahan PE, Eyster ME. et al. Multiyear factor VIII expression after AAV gene transfer for hemophilia A. N Engl J Med 2021; 385 (21) 1961-1973
  • 50 Ozelo MC, Mahlangu J, Pasi KJ. et al; GENEr8-1 Trial Group. Valoctocogene roxaparvovec gene therapy for hemophilia A. N Engl J Med 2022; 386 (11) 1013-1025
  • 51 George LA, Sullivan SK, Giermasz A. et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med 2017; 377 (23) 2215-2227
  • 52 Nathwani AC, Reiss UM, Tuddenham EG. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014; 371 (21) 1994-2004
  • 53 Rangarajan S, Walsh L, Lester W. et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med 2017; 377 (26) 2519-2530
  • 54 Coppens M, Pipe SW, Miesbach W. et al; HOPE-B Investigators. Etranacogene dezaparvovec gene therapy for haemophilia B (HOPE-B): 24-month post-hoc efficacy and safety data from a single-arm, multicentre, phase 3 trial. Lancet Haematol 2024; 11 (04) e265-e275
  • 55 CSL Behring. HEMGENIX - Summary of Product Characteristics. 2023 . Accessed on 31 January 2024 at: https://www.ema.europa.eu/en/documents/product-information/hemgenix-epar-product-information_en.pdf
  • 56 Medicines and Healthcare products Regulatory Agency. Orphan Registered Medicinal Products: HEMGENIX. 2023 . Accessed on 31 January 2024 at: https://www.gov.uk/government/publications/orphan-registered-medicinal-products/orphan-register#hemgenix-1-x-1013-genome-copiesml-concentrate-for-solution-for-infusion
  • 57 Cuker A, Alzahrani H, Astermark J. et al. Efficacy and safety of fidanacogene elaparvovec in adults with moderately severe or severe hemophilia B: results from the phase 3 BENEGENE-2 gene therapy trial. ISTH 2023
  • 58 Samelson-Jones BJ. et al. Follow-up of More than 5 years in a cohort of patients with hemophilia B treated with fidanacogene elaparvovec adeno-associated virus gene therapy. Blood 2021; 138 (Suppl. 01) 3975
  • 59 Miesbach W, Oldenburg J, Klamroth R. et al. Gentherapie der Hämophilie: Empfehlung der Gesellschaft für Thrombose- und Hämostaseforschung (GTH). [Gene therapy of hemophilia: recommendations from the German, Austrian, and Swiss Society for Thrombosis and Haemostasis Research (GTH)] Hamostaseologie 2023; 43 (03) 196-207
  • 60 Ertl HCJ. Immunogenicity and toxicity of AAV gene therapy. Front Immunol 2022; 13: 975803
  • 61 Greig JA, Martins KM, Breton C. et al. Integrated vector genomes may contribute to long-term expression in primate liver after AAV administration. Nat Biotechnol 2023 DOI: 10.1038/s41587-023-01974-7
  • 62 Miesbach W, Foster GR, Peyvandi F. Liver-related aspects of gene therapy for haemophilia: call to action for collaboration between haematologists and hepatologists. J Hepatol 2023; 78 (03) 467-470
  • 63 Castaman G, Coppens M, Pipe SW. Etranacogene dezaparvovec for the treatment of adult patients with severe and moderately severe hemophilia B. Expert Rev Hematol 2023; 16 (12) 919-932
  • 64 Konkle BA, Walsh CE, Escobar MA. et al. BAX 335 hemophilia B gene therapy clinical trial results: potential impact of CpG sequences on gene expression. Blood 2021; 137 (06) 763-774
  • 65 Konkle BA, Coffin D, Pierce GF. et al; Members of the WFH Gene Therapy Registery Steering Committee. World Federation of hemophilia gene therapy registry. Haemophilia 2020; 26 (04) 563-564