Subscribe to RSS
DOI: 10.1055/s-0044-1787680
Mechanical Properties and Failure Mode of Proximal Screw Fixation Technique Using Locking Compression Plate for Proximal Interphalangeal Arthrodesis in Horses: An Ex Vivo Study
Funding This study was supported by the São Paulo Research Foundation (FAPESP) Grants numbers 2022/13143-3 and 2021/07105-9. This study received partial funding from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Finance Code 001 and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), process number: 132994/2019-4.Abstract
Objective The aim of this study was to measure the mechanical properties and failure mode of an ex vivo model of proximal interphalangeal arthrodesis in horses with different methods of proximal screw fixation using a locking compression plate.
Study Design Pastern joint arthrodesis with a 3-hole 4.5-mm narrow locking compression plate was performed on 20 forelimbs of equine cadavers, randomized into four groups based on the fixation method and type of proximal screw used: unicortical cortex, bicortical cortex, unicortical locking, bicortical locking. Single-cycle axial compression testing was conducted until failure. The frequency of implant plastic deformation was recorded. Bone failure analysis was performed through computed tomography examinations and fractal analysis.
Results There were no differences in the analysed mechanical variables and fractal dimension among the groups. Transarticular screws showed a higher frequency of deformation (75%) regardless of the group. Both unicortical locking and bicortical locking groups deformed the plate more frequently.
Conclusion The type of screw used in the proximal hole of the locking compression plate and its method of anchoring in the proximal phalanx do not affect the mechanical properties of pastern arthrodesis in equine cadavers subjected to single-cycle axial compression tests until failure.
Keywords
unicortical screw - stress riser - pastern joint - horse - locking compression plate - arthrodesisEthical Approval Statement
The study protocol was reviewed and approved by the Ethics Committee for Animal Use of FMVZ-USP under protocol number CEUAx No. 8986101019.
Authors' Contribution
A.F.S. and A.L.V.Z. conceived the idea for the article. A.F.S. conducted the surgical procedures. A.F.S. and C.A.M.P. collected and processed the mechanical data. A.F.S. and C.C. collected and processed the fractal analysis data. A.F.S. conducted the statistical analysis. A.F.S., A.L.V.Z., A.F., and J.M.K. analyzed and interpreted the data. A.F.S. and A.L.V.Z. wrote the manuscript. All authors contributed to the critical revision and approval of the final manuscript.
Publication History
Received: 18 September 2023
Accepted: 16 May 2024
Article published online:
04 June 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lischer CJ, Auer JA. Arthrodesis Techniques. In: Auer JA, Stick JA, Kümmerle JM, Prange T. eds. Equine Surgery. 5th ed.. Elsevier; 2019: 1374-1398
- 2 Souza AF, Zoppa Ado V. Proximal interphalangeal joint arthrodesis in horses: concepts, indications, and techniques. Braz J Vet Res Anim Sci 2021; 58: e178586-e178586
- 3 de Souza AF, Paretsis NF, De Zoppa ALDV. Proximal interphalangeal arthrodesis in horses: a meta-analysis of retrospective studies. J Equine Vet Sci 2023; 122: 104226
- 4 Watkins JP. Arthrodesis of the proximal interphalangeal joint. In: Equine Fracture Repair. 2nd ed.. Wiley; 2019: 277-294
- 5 Hicks RB, Glass KG, Watkins JP. Proximal interphalangeal locking compression plate for pastern arthrodesis in horses. Equine Vet J 2021; 54 (04) 740-749
- 6 Sakai RR, Goodrich LR, Katzman SA. et al. Use of a locking compression plate for equine proximal interphalangeal joint arthrodesis: 29 cases (2008-2014). J Am Vet Med Assoc 2018; 253 (11) 1460-1466
- 7 Auer JA. Horse phalanges. AO Foundation Surgery Reference. 2023 . Accessed May 22, 2023 at: https://surgeryreference.aofoundation.org/
- 8 Crabill MR, Watkins JP, Schneider RK, Auer JA. Double-plate fixation of comminuted fractures of the second phalanx in horses: 10 cases (1985-1993). J Am Vet Med Assoc 1995; 207 (11) 1458-1461
- 9 McCormick JD, Watkins JP. Double plate fixation for the management of proximal interphalangeal joint instability in 30 horses (1987-2015). Equine Vet J 2017; 49 (02) 211-215
- 10 Arthurs G. Advances in internal fixation locking plates. In Pract 2015; 37 (01) 13-20
- 11 Allgöwer M, Perren S, Matter P. A new plate for internal fixation–the dynamic compression plate (DCP). Injury 1970; 2 (01) 40-47
- 12 Afshar R, Fong TS, Latifi MH, Kanthan SR, Kamarul T. A biomechanical study comparing plate fixation using unicortical and bicortical screws in transverse metacarpal fracture models subjected to cyclic loading. J Hand Surg Eur Vol 2012; 37 (05) 396-401
- 13 Itou J, Kuwashima U, Itoh M, Kuroda K, Yokoyama Y, Okazaki K. Monocortical fixation for locking plate distal screws does not impair mechanical properties in open-wedge high tibial osteotomy. BMC Musculoskelet Disord 2021; 22 (01) 157
- 14 Santos RR, Rahal SC, Mesquita Neto C. et al. Biomechanical analysis of locking reconstruction plate using mono- or bicortical screws. Mater Res 2016; 19: 588-593
- 15 Knox PM, Watkins JP. Proximal interphalangeal joint arthrodesis using a combination plate-screw technique in 53 horses (1994-2003). Equine Vet J 2006; 38 (06) 538-542
- 16 de Souza AF, Marcondes Gde M, Paretsis NF, Corrêa RR, Spagnolo JD. Zoppa AL do VD. Proximal interphalangeal arthrodesis in seven horses: a retrospective study in Brazil (2011–2019). Cienc Rural 2021; 51: e20200741
- 17 Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br 2002; 84 (08) 1093-1110
- 18 Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39 (02) 175-191
- 19 Zoppa ALV, Santoni B, Puttlitz CM, Cochran K, Hendrickson DA. Arthrodesis of the equine proximal interphalangeal joint: a biomechanical comparison of 3-hole 4.5 mm locking compression plate and 3-hole 4.5 mm narrow dynamic compression plate, with two transarticular 5.5 mm cortex screws. Vet Surg 2011; 40 (02) 253-259
- 20 Latorre CAS, de Souza AF, Ramos PAR. et al. Comparison of a 3-hole 4.5-mm dynamic compression plate and a 7-hole 5.5-mm y locking compression plate for arthrodesis of the proximal interphalangeal joint in horses - an ex vivo biomechanical study. J Equine Vet Sci 2020; 94: 103252
- 21 Brama PA, Karssenberg D, Barneveld A, van Weeren PR. Contact areas and pressure distribution on the proximal articular surface of the proximal phalanx under sagittal plane loading. Equine Vet J 2001; 33 (01) 26-32
- 22 Souza SA. Ensaios Mecânicos de Materiales Metálicos. Fundamentos Teóricos e Prácticos. 5th ed.. Edgard Blücher; 1982
- 23 Cahn RW. Fractal dimension and fracture. Nature 1989; 338 (6212) 201-202
- 24 Doube M, Kłosowski MM, Arganda-Carreras I. et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone 2010; 47 (06) 1076-1079
- 25 Schindelin J, Arganda-Carreras I, Frise E. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9 (07) 676-682
- 26 Müller ME, Allgöwer M, Schneider R, Willenegger H. Manual of Internal Fixation: Techniques Recommended by the AO Group. 2nd ed.. Springer-Verlag; 1979
- 27 Auer JA. Principles of fracture treatment. In: Auer JA, Stick JA, Kümmerle JM, Prange T. eds. Equine Surgery. 5th ed.. Elsevier; 2019: 1277-1314
- 28 Watts AE, Nixon AJ. Luxation of the shoulder. In: Equine Fracture Repair. 2nd ed.. Wiley; 2019: 588-602
- 29 Beaupré GS, Giori NJ, Caler WE, Csongradi J. A comparison of unicortical and bicortical end screw attachment of fracture fixation plates. J Orthop Trauma 1992; 6 (03) 294-300
- 30 Park KC, Lim SJ, Song YS, Hwang KT. Factors affecting peri-implant fracture following locking plate for osteoporotic distal femur fractures. Orthop Traumatol Surg Res 2017; 103 (08) 1201-1204
- 31 Bottlang M, Doornink J, Byrd GD, Fitzpatrick DC, Madey SM. A nonlocking end screw can decrease fracture risk caused by locked plating in the osteoporotic diaphysis. J Bone Joint Surg Am 2009; 91 (03) 620-627
- 32 Davenport SR, Lindsey RW, Leggon R, Miclau T, Panjabi M. Dynamic compression plate fixation: a biomechanical comparison of unicortical vs bicortical distal screw fixation. J Orthop Trauma 1988; 2 (02) 146-150
- 33 Miller DL, Goswami T. A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clin Biomech (Bristol, Avon) 2007; 22 (10) 1049-1062
- 34 Souza AF, Zoppa Ado VD. Stress riser in orthopedics. Glob J Orthop 2022; 8-10
- 35 Yoo J, Ma X, Lee J, Hwang J. Research update on stress riser fractures. Indian J Orthop 2020; 55 (03) 560-570
- 36 Watt BC, Edwards III RB, Markel MD, McCabe R, Wilson DG. Arthrodesis of the equine proximal interphalangeal joint: a biomechanical comparison of three 4.5-mm and two 5.5-mm cortical screws. Vet Surg 2001; 30 (03) 287-294
- 37 Heim C, Sommer KS, Fürst A. Proximal interphalangeal joint arthrodesis in the horse. Pferdeheilkunde 2021; 37 (01) 42-49
- 38 García-Vilana S, Sánchez-Molina D, Velázquez-Ameijide J, Llumà J, Arregui-Dalmases C. Relation between mechanical and densimetric properties to fractal dimension in human rib cortical bone. Med Eng Phys 2023; 117: 104004
- 39 Weinstein RS, Majumdar S. Fractal geometry and vertebral compression fractures. J Bone Miner Res 1994; 9 (11) 1797-1802
- 40 Yaşar F, Akgünlü F. Fractal dimension and lacunarity analysis of dental radiographs. Dentomaxillofac Radiol 2005; 34 (05) 261-267
- 41 Perfect E. Fractal models for the fragmentation of rocks and soils: a review. Eng Geol 1997; 48 (03) 185-198
- 42 Korolj A, Wu HT, Radisic M. A healthy dose of chaos: using fractal frameworks for engineering higher-fidelity biomedical systems. Biomaterials 2019; 219: 119363
- 43 Walsh JJ, Watterson J. Fractal analysis of fracture patterns using the standard box-counting technique: valid and invalid methodologies. J Struct Geol 1993; 15 (12) 1509-1512
- 44 Lawrence LA, Ott EA, Miller GJ, Poulos PW, Piotrowski G, Asquith RL. The mechanical properties of equine third metacarpals as affected by age. J Anim Sci 1994; 72 (10) 2617-2623
- 45 Fürst A, Meier D, Michel S, Schmidlin A, Held L, Laib A. Effect of age on bone mineral density and micro architecture in the radius and tibia of horses: an Xtreme computed tomographic study. BMC Vet Res 2008; 4 (01) 3
- 46 Meira JBC, Jikihara AN, Capetillo P, Roscoe MG, Cattaneo PM, Ballester RY. Finite element analysis in dentistry. In: Dental Biomaterials. Vol 2. World Scientific Series: From Biomaterials Towards Medical Devices. World Scientific; 2017: 67-89
- 47 Souza AF, Zoppa Ado VD. Finite element method in equine orthopedics. Arch Clin Exp Orthop 2021; 5 (01) 1-2