CC BY 4.0 · Journal of Child Science 2024; 14(01): e24-e32
DOI: 10.1055/s-0044-1787682
Review Article

Clinical Implications and Genetic Basis of Sleep Deprivation in Children

Laura Martínez-Torres
1   Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá DC, Colombia
,
Natalia Diaz-Orjuela
1   Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá DC, Colombia
,
María Montaño Morales
1   Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá DC, Colombia
,
Sara Poveda Jiménez
1   Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá DC, Colombia
,
Paula Pinilla Amaya
1   Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá DC, Colombia
,
Mariana Vargas Contreras
1   Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá DC, Colombia
,
Sneyder Quitiaquez Figueroa
1   Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá DC, Colombia
,
Juan Ramírez Naranjo
1   Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá DC, Colombia
,
Omar Rodriguez Uribe
1   Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá DC, Colombia
,
1   Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá DC, Colombia
2   Departamento de Pediatría, Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud (FUCS) – Sociedad de Cirugia de Bogota – Hospital de San José, Bogotá DC, Colombia
3   Departamento de Pediatria, Universidad Nacional de Colombia (UNAL), Bogota, Colombia
,
4   Research Institute, Grupo de Ciencias Básicas-CBS-FUCS, Facultad de Medicina, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá DC, Colombia
,
Daniela Rodriguez Sanchez
5   Facultad de Medicina, Universidad de los Andes, Bogotá DC, Colombia
,
6   Departamento de Pediatría Universidad Nacional de Colombia (UNAL) y Departamento de Pediatría, Fundación Santafe de Bogotá, Bogotá DC, Colombia
› Author Affiliations

Abstract

Sleep is a complex biological and physiological process that allows the body to rest in addition to playing an important role in proper homeostasis in different body systems such as immune, metabolic, cardiovascular, neurological, and hormonal. It is important to preserve the quality of sleep, for adequate vitality, since the alterations that occur in any of the phases of sleep have repercussions on several systems of an organism, whether they are short or long term, such as the negative effect of sleep deprivation on the hormonal and metabolic regulation of various pathophysiological processes that will contribute to the development of obesity in pediatric patients. It has been found that sleep-related problems are common in children, being a frequent reason for medical consultations. In addition to the aforementioned, there may also be alterations at the level of the cortex, which is associated with the nonregulation of emotions in preadolescent and adolescent pediatric patients. Finally, sleep could depend on polymorphisms that become risk alleles for having short-term sleep; likewise, there are genes that have a greater expression at the time of rest, which allows a relationship to be made with diseases developed in the face of sleep depletion. This article describes the clinical implications in pediatric patients as a consequence of sleep deprivation and its genetic bases.



Publication History

Received: 17 January 2024

Accepted: 03 April 2024

Article published online:
21 June 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep 2017; 9: 151-161
  • 2 Rana M, Riffo Allende C, Mesa Latorre T, Rosso Astorga K, Torres AR. [Sleep in children: physiology and update of a literature review]. Medicina (B Aires) 2019; 79 (Suppl. 03) 25-28
  • 3 Buysse DJ. Sleep health: can we define it? Does it matter?. Sleep 2014; 37 (01) 9-17
  • 4 Paruthi S, Brooks LJ, D'Ambrosio C. et al. Recommended amount of sleep for pediatric populations: a consensus statement of the American Academy of Sleep Medicine. J Clin Sleep Med 2016; 12 (06) 785-786
  • 5 Khachatryan SG. Insomnia burden and future perspectives. Sleep Med Clin 2021; 16 (03) 513-521
  • 6 Sateia M. International classification of sleep disorders—third edition. Chest 2014; 146 (05) 1387-1394
  • 7 Chaput JP. Is sleep deprivation a contributor to obesity in children?. Eat Weight Disord 2016; 21 (01) 5-11
  • 8 Cardenas V, Hernandez R. The role of sleep as a risk of obesity. Cientif Enferm Mex 2012; 20: 1-4
  • 9 Cheng W, Rolls E, Gong W. et al. Sleep duration, brain structure, and psychiatric and cognitive problems in children. Mol Psychiatry 2021; 26 (08) 3992-4003
  • 10 Rolls ET, Cheng W, Feng J. The orbitofrontal cortex: reward, emotion and depression. Brain Commun 2020; 2 (02) fcaa196
  • 11 Shimizu M, Zeringue MM, Erath SA, Hinnant JB, El-Sheikh M. Trajectories of sleep problems in childhood: associations with mental health in adolescence. Sleep 2021; 44 (03) x
  • 12 Foley JE, Weinraub M. Sleep, affect, and social competence from preschool to preadolescence: distinct pathways to emotional and social adjustment for boys and for girls. Front Psychol 2017; 8: 711
  • 13 Sampasa-Kanyinga H, Colman I, Goldfield GS. et al. Combinations of physical activity, sedentary time, and sleep duration and their associations with depressive symptoms and other mental health problems in children and adolescents: a systematic review. Int J Behav Nutr Phys Act 2020; 17 (01) 72
  • 14 Becker SP, Dvorsky MR, Holdaway AS, Luebbe AM. Sleep problems and suicidal behaviors in college students. J Psychiatr Res 2018; 99: 122-128
  • 15 Jáuregui M, Razumiejczyk E. Memoria y aprendizaje: una revisión de las contribuciones cognitivas. Revista Virtual de la Facultad de Psicología y Psicopedagogía de la Universidad de Salvador, 2011; 26.
  • 16 Guzmán E. Sleep, dreams, and learning: toward a neurophysiology of cognition. Acta Med Colomb 1992; 17 (04) 258-263
  • 17 Aguilar L, Caballero S, Ormea V. et al. Sleep neuroscience: role in learning processes and quality of life. . Apunt Cienc Soc 2017;7(02):
  • 18 Carrillo P, Ramírez J, Magaña K. Neurobiology of sleep and its importance: an anthology for the university student. Rev Fac Med (Caracas) 2013; 56 (04) 5-15
  • 19 Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol 2005; 25 (01) 117-129
  • 20 Killgore WD. Effects of sleep deprivation on cognition. Prog Brain Res 2010; 185: 105-129
  • 21 Luo F, Sandhu AF, Rungratanawanich W. et al. Melatonin and autophagy in aging-related neurodegenerative diseases. Int J Mol Sci 2020; 21 (19) 7174
  • 22 Garbarino S, Lanteri P, Bragazzi NL, Magnavita N, Scoditti E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun Biol 2021; 4 (01) 1304
  • 23 Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 2019; 18 (03) 307-318
  • 24 Spindola A, Targa ADS, Rodrigues LS. et al. Increased Mmp/Reck expression ratio is associated with increased recognition memory performance in a Parkinson's disease animal model. Mol Neurobiol 2020; 57 (02) 837-847
  • 25 Krietsch K, King C, Beebe D. Experimental sleep restriction increases somatic complaints in healthy adolescents. Sleep Med 2020; 73: 213-216
  • 26 Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 2016; 354 (6315): 1004-1008
  • 27 Bishir M, Bhat A, Essa MM. et al. Sleep deprivation and neurological disorders. BioMed Res Int 2020; 2020: 5764017
  • 28 Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch 2012; 463 (01) 121-137
  • 29 Rico-Rosillo MG, Vega-Robledo GB. [Sleep and immune system]. Alergia 2018; 65 (02) 160-170
  • 30 Haspel JA, Anafi R, Brown MK. et al. Perfect timing: circadian rhythms, sleep, and immunity—an NIH workshop summary. JCI Insight 2020; 5 (01) e131487
  • 31 Martí S, Ferré A, Sampol G. et al. Sleep increases leaks and asynchronies during home noninvasive ventilation: a polysomnographic study. J Clin Sleep Med 2022; 18 (01) 225-233
  • 32 Khalyfa A, Almendros I, Gileles-Hillel A. et al. Circulating exosomes potentiate tumor malignant properties in a mouse model of chronic sleep fragmentation. Oncotarget 2016; 7 (34) 54676-54690
  • 33 Hakim F, Wang Y, Zhang SX. et al. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res 2014; 74 (05) 1329-1337
  • 34 Ellegren H, Galtier N. Determinants of genetic diversity. Nat Rev Genet 2016; 17 (07) 422-433
  • 35 Kroll C, Trombelli MCMC, Schultz LF, El Rafihi-Ferreira R, Mastroeni MF. Association of LEP-rs7799039 and ADIPOQ-rs2241766 polymorphisms with sleep duration in preschool age children. Sleep Med 2020; 66: 68-75
  • 36 Trivedi MS, Holger D, Bui AT, Craddock TJA, Tartar JL. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status. PLoS One 2017; 12 (07) e0181978
  • 37 Gaine ME, Chatterjee S, Abel T. Sleep deprivation and the epigenome. Front Neural Circuits 2018; 12 (14) 14
  • 38 Abbott SM, Videnovic A. Chronic sleep disturbance and neural injury: links to neurodegenerative disease. Nat Sci Sleep 2016; 8: 55-61
  • 39 Koopman-Verhoeff ME, Mulder RH, Saletin JM. et al. Genome-wide DNA methylation patterns associated with sleep and mental health in children: a population-based study. J Child Psychol Psychiatry 2020; 61 (10) 1061-1069
  • 40 Wei X, Du P, Zhao Z. Impacts of DNA methylation on Tau protein related genes in the brains of patients with Alzheimer's disease. Neurosci Lett 2021; 763: 136196
  • 41 Pedrazzoli M, Mazzotti DR, Ribeiro AO, Mendes JV, Bittencourt LRA, Tufik S. A single nucleotide polymorphism in the HOMER1 gene is associated with sleep latency and theta power in sleep electroencephalogram. PLoS One 2020; 15 (07) e0223632
  • 42 Doherty A, Smith-Byrne K, Ferreira T. et al. GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat Commun 2018; 9 (01) 5257
  • 43 Dashti HS, Jones SE, Wood AR. et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat Commun 2019; 10 (01) 1100
  • 44 Marinelli M, Pappa I, Bustamante M. et al. Heritability and genome-wide association analyses of sleep duration in children: the EAGLE consortium. Sleep 2016; 39 (10) 1859-1869
  • 45 Dashti HS, Ordovás JM. Genetics of sleep and insights into its relationship with obesity. Annu Rev Nutr 2021; 41: 223-252
  • 46 da Costa Souza A, Ribeiro S. Sleep deprivation and gene expression. Curr Top Behav Neurosci 2015; 25: 65-90
  • 47 Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev 2006; 10 (01) 49-62
  • 48 Tao-Cheng JH, Thein S, Yang Y, Reese TS, Gallant PE. Homer is concentrated at the postsynaptic density and does not redistribute after acute synaptic stimulation. Neuroscience 2014; 266: 80-90
  • 49 Zhu J, Hafycz J, Keenan BT, Guo X, Pack A, Naidoo N. Acute sleep loss upregulates the synaptic scaffolding protein, Homer1a, in non-canonical sleep/wake brain regions, claustrum, piriform and cingulate cortices. Front Neurosci 2020; 14: 188
  • 50 Butler JL, Barham BJ, Heidenreich BA. Comparison of indirect peroxidase and avidin-biotin-peroxidase complex (ABC) immunohistochemical staining procedures for c-fos in rat brain. J Anat 2019; 234 (06) 936-942
  • 51 Thompson CL, Wisor JP, Lee CK. et al. Molecular and anatomical signatures of sleep deprivation in the mouse brain. Front Neurosci 2010; 4: 165