CC BY 4.0 · Rev Bras Ortop (Sao Paulo) 2024; 59(04): e519-e525
DOI: 10.1055/s-0044-1787768
Artigo Original
Básica

Histomorphometric Study of Non-critical Bone Defect Repair after Implantation of Magnesium-substituted Hydroxyapatite Microspheres

Artikel in mehreren Sprachen: português | English
1   Centro de Medicina Hiperbárica do Nordeste (CMHN), Salvador, BA, Brasil
,
2   Centro de Ciências da Saúde (CCS), Universidade Federal do Recôncavo da Bahia (UFRB), Santo Antônio de Jesus, BA, Brasil
,
3   Programa de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGPIOS), Faculdade Adventista da Bahia (FADBA), Cachoeira, BA, Brasil
,
4   Centro de Ciências Agrárias, Ambientais e Biológicas (CCAAB), Universidade Federal do Recôncavo da Bahia (UFRB), Cruz das Almas, BA, Brasil
,
5   Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia (UFBA), Salvador, BA, Brasil
,
6   Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, BA, Brasil
,
6   Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, BA, Brasil
,
5   Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia (UFBA), Salvador, BA, Brasil
› Institutsangaben
Financial Support The authors declare that they have not received financial support from agencies in the public, private, or non-profit sectors to conduct the present study.

Abstract

Objective The present study aims to analyze histomorphometrically the repair of a non-critical bone defect after implantation of hydroxyapatite (HA) microspheres substituted by magnesium (Mg).

Methods Thirty rats were distributed into 3 experimental groups, evaluated at 15 and 45 days postoperatively: HAG (bone defect filled with HA microspheres); HAMgG (bone defect filled with HA microspheres replaced with 1 mol% Mg), and CG (bone defect without implantation of biomaterials).

Results After 15 days, the biomaterials filled the entire defect extent, forming a new osteoid matrix between the microspheres. In the CG, this neoformation was restricted to the edges with the deposition of loose connective tissue with reduced thickness. At 45 days, new bone formation filled almost the entire extension of the bone defect in the 3 groups, with statistically significant osteoid deposition in the CG despite the reduced thickness compared with the HAG and HAMgG. The groups with biomaterial implantation displayed a more abundant osteoid matrix than at 15 days.

Conclusion The biomaterials studied showed biocompatibility, osteoconductivity, and bioactivity. The Mg concentration in the substituted HA did not stimulate more significant bone formation than HA without this ion.

Authors' Contributions

The authors contributed individually and significantly to the development of this article: JAS: Study conception and design; manuscript preparation; and surgical procedures. GGS: Manuscript preparation; and surgical and technical procedures. IIAR: Manuscript preparation; and surgical and technical procedures. AMGBS: Manuscript preparation and english text review. ICB: Surgical and technical procedures and histopathological analysis. MAM: Study conception and design; and histopathological analysis. MAB: Study conception and design; and histopathological analysis. FBM: Study conception and design; surgical and technical procedures; and critical review.


Work carried out at the Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil.




Publikationsverlauf

Eingereicht: 04. Oktober 2023

Angenommen: 05. April 2024

Artikel online veröffentlicht:
04. September 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Fiume E, Magnaterra G, Rahdar A, Verné E, Baino F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021; 4 (04) 542-563
  • 2 Santos GGD, Vasconcelos LQ, Poy SCDS. et al. Influence of the geometry of nanostructured hydroxyapatite and alginate composites in the initial phase of bone repair1. Acta Cir Bras 2019; 34 (02) e201900203
  • 3 Arcos D, Vallet-Regí M. Substituted hydroxyapatite coatings of bone implants. J Mater Chem B Mater Biol Med 2020; 8 (09) 1781-1800
  • 4 Santos GG, Nunes VLC, Marinho SMOC, Santos SRA, Rossi AM, Miguel FB. Biological behavior of magnesium-substituted hydroxyapatite during bone repair. Braz J Biol 2021; 81 (01) 53-61
  • 5 Kim H, Hwangbo H, Koo Y, Kim G. Fabrication of mechanically reinforced gelatin/hydroxyapatite bio-composite scaffolds by core/shell nozzle printing for bone tissue engineering. Int J Mol Sci 2020; 21 (09) 3401
  • 6 de Lima IR, Alves GG, Soriano CA. et al. Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A 2011; 98 (03) 351-358
  • 7 Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater 2017; 105 (05) 1285-1299
  • 8 Castiglioni S, Cazzaniga A, Albisetti W, Maier JA. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients 2013; 5 (08) 3022-3033
  • 9 Tavares DdosS, Castro LdeO, Soares GD, Alves GG, Granjeiro JM. Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. J Appl Oral Sci 2013; 21 (01) 37-42
  • 10 Scalera F, Palazzo B, Barca A, Gervaso F. Sintering of magnesium-strontium doped hydroxyapatite nanocrystals: Towards the production of 3D biomimetic bone scaffolds. J Biomed Mater Res A 2020; 108 (03) 633-644
  • 11 Liu X, Ma Y, Chen M. et al. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B Mater Biol Med 2021; 9 (33) 6691-6702
  • 12 Miguel FB, Barbosa Júnior AdeA, de Paula FL, Barreto IC, Goissis G, Rosa FP. Regeneration of critical bone defects with anionic collagen matrix as scaffolds. J Mater Sci Mater Med 2013; 24 (11) 2567-2575
  • 13 Daltro AF, Barreto IC, Rosa FP. Analysis of the effect of the vibrating platform on the regeneration of critical bone defect. Rev Ciênc Méd Biol 2016; 15 (03) 323-329
  • 14 Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc 2012; 7 (10) 1918-1929
  • 15 Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008; 20 (02) 86-100
  • 16 Klopfleisch R. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers. Acta Biomater 2016; 43: 3-13
  • 17 Almeida RS, Prado da Silva MH, Navarro da Rocha D. et al. Regeneration of a critical bone defect after implantation of biphasic calcium phosphate (β -tricalcium phosphate/calcium pyrophosphate) and phosphate bioactive glass. Ceramics 2020; 66 (378) 119-125
  • 18 Ribeiro IIA, Barbosa Junior AA, Rossi AM, Almeida RS, Miguel FB, Rosa FP. Strontium-containing nanostructured hydroxyapatite microspheres for bone regeneration. Res Soc Dev 2023; 12 (04) e22112441222
  • 19 Trzaskowska M, Vivcharenko V, Przekora A. The Impact of Hydroxyapatite Sintering Temperature on Its Microstructural, Mechanical, and Biological Properties. Int J Mol Sci 2023; 24 (06) 5083
  • 20 Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986; (205) 299-308
  • 21 Gosain AK, Santoro TD, Song LS, Capel CC, Sudhakar PV, Matloub HS. Osteogenesis in calvarial defects: contribution of the dura, the pericranium, and the surrounding bone in adult versus infant animals. Plast Reconstr Surg 2003; 112 (02) 515-527
  • 22 de Almeida AL, Medeiros IL, Cunha MJ, Sbrana MC, de Oliveira PG, Esper LA. The effect of low-level laser on bone healing in critical size defects treated with or without autogenous bone graft: an experimental study in rat calvaria. Clin Oral Implants Res 2014; 25 (10) 1131-1136
  • 23 Araújo CRG, Astarita C, D'Aquino R, Pelegrine AA. Evaluation of Bone Regeneration in Rat Calvaria Using Bone Autologous Micrografts and Xenografts: Histological and Histomorphometric Analysis. Materials (Basel) 2020; 13 (19) 4284
  • 24 Sousa DN, Roriz VM, Oliveira GJPL. et al. Local effect of simvastatin combined with different osteoconductive biomaterials and collagen sponge on new bone formation in critical defects in rat calvaria. Acta Cir Bras 2020; 35 (01) e202000102
  • 25 Ballouze R, Marahat MH, Mohamad S, Saidin NA, Kasim SR, Ooi JP. Biocompatible magnesium-doped biphasic calcium phosphate for bone regeneration. J Biomed Mater Res B Appl Biomater 2021; 109 (10) 1426-1435
  • 26 Ma P, Chen T, Wu X. et al. Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments. J Mater Chem B Mater Biol Med 2021; 9 (33) 6600-6613
  • 27 Kuśnierczyk K, Basista M. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials. J Biomater Appl 2017; 31 (06) 878-900
  • 28 Mammoli F, Castiglioni S, Parenti S. et al. Magnesium Is a Key Regulator of the Balance between Osteoclast and Osteoblast Differentiation in the Presence of Vitamin D3 . Int J Mol Sci 2019; 20 (02) 385
  • 29 Predoi D, Iconaru SL, Predoi MV, Stan GE, Buton N. Synthesis, Characterization, and Antimicrobial Activity of Magnesium-Doped Hydroxyapatite Suspensions. Nanomaterials (Basel) 2019; 9 (09) 1295
  • 30 Yu Y, Jin G, Xue Y, Wang D, Liu X, Sun J. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater 2017; 49: 590-603