Semin Thromb Hemost
DOI: 10.1055/s-0044-1787976
Review Article

Point-of-Care Testing in Patients with Hereditary Disorders of Primary Hemostasis: A Narrative Review

Aernoud P. Bavinck
1   Department of Hematology, Radboud University Medical Centre, Nijmegen, The Netherlands
,
Waander van Heerde
2   Department of Hematology, Radboud University Medical Centre, Hemophilia Treatment Centre Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands
,
Saskia E.M. Schols
2   Department of Hematology, Radboud University Medical Centre, Hemophilia Treatment Centre Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands
› Author Affiliations

Abstract

Inherited disorders of primary hemostasis, such as von Willebrand disease and congenital platelet disorders, can cause extensive, typically mucocutaneous bleeding. Assays to diagnose and monitor these disorders, such as von Willebrand factor activity assays and light transmission aggregometry, are performed in specialized hemostasis laboratories but are commonly not available in local hospitals. Due to the complexity and relative scarcity of these conventional assays, point-of-care tests (POCT) might be an attractive alternative in patients with hereditary bleeding disorders. POCTs, such as thromboelastography, are increasingly used to assess hemostasis in patients with acquired hemostatic defects, aiding clinical decision-making in critical situations, such as during surgery or childbirth. In comparison, the use of these assays in patients with hereditary hemostasis defects remains relatively unexplored. This review aims to give an overview of point-of-care hemostasis tests in patients with hereditary disorders of primary hemostasis. A summary of the literature reporting on the performance of currently available and experimental POCTs in these disorders is given, and the potential utility of the assays in various use scenarios is discussed. Altogether, the studies included in this review reveal that several POCTs are capable of identifying and monitoring severe defects in the primary hemostasis, while a POCT that can reliably detect milder defects of primary hemostasis is currently lacking. A better understanding of the strengths and limitations of POCTs in assessing hereditary defects of primary hemostasis is needed, after which these tests may become available for clinical practice, potentially targeting a large group of patients with milder defects of primary hemostasis.

Supplementary Material



Publication History

Article published online:
01 July 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Bowman M, Hopman WM, Rapson D, Lillicrap D, James P. The prevalence of symptomatic von Willebrand disease in primary care practice. J Thromb Haemost 2010; 8 (01) 213-216
  • 2 Oved JH, Lambert MP, Kowalska MA, Poncz M, Karczewski KJ. Population based frequency of naturally occurring loss-of-function variants in genes associated with platelet disorders. J Thromb Haemost 2021; 19 (01) 248-254
  • 3 Gresele P, Harrison P, Bury L. et al. Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey. J Thromb Haemost 2014; 12 (09) 1562-1569
  • 4 Pilsczek FH, Rifkin WD, Walerstein S. Overuse of prothrombin and partial thromboplastin coagulation tests in medical inpatients. Heart Lung 2005; 34 (06) 402-405
  • 5 Noris P, Schlegel N, Klersy C. et al; European Hematology Association – Scientific Working Group on Thrombocytopenias and Platelet Function Disorders. Analysis of 339 pregnancies in 181 women with 13 different forms of inherited thrombocytopenia. Haematologica 2014; 99 (08) 1387-1394
  • 6 Hagembe J, Baumann A, Haffar A, Pierce GF, Toulon P. Development of a target product profile (TTP) for haemophilia point-of-care (POC) diagnostic devices for low-resource countries and remote settings. Haemophilia 2023; 29 (02) 671-673
  • 7 Woźniak MJ, Abbasciano R, Monaghan A. et al. Systematic review and meta-analysis of diagnostic test accuracy studies evaluating point-of-care tests of coagulopathy in cardiac surgery. Transfus Med Rev 2021; 35 (01) 7-15
  • 8 Collins P. Point-of-care coagulation testing for postpartum haemorrhage. Best Pract Res Clin Anaesthesiol 2022; 36 (3-4): 383-398
  • 9 Caspers M, Holle JF, Limper U, Fröhlich M, Bouillon B. Global coagulation testing in acute care medicine: back to bedside?. Hamostaseologie 2022; 42 (06) 400-408
  • 10 Barcellona D, Fenu L, Marongiu F. Point-of-care testing INR: an overview. Clin Chem Lab Med 2017; 55 (06) 800-805
  • 11 Owen CA. A History of Blood Coagulation. Mayo Foundation for Medical;; 2001
  • 12 Rodgers RP, Levin J. A critical reappraisal of the bleeding time. Semin Thromb Hemost 1990; 16 (01) 1-20
  • 13 Kadota RP, Bowie EJ, Emslander HC, Fass DN, Ilstrup DM. The capillary thrombometer revisited. Haemostasis 1987; 17 (1-2): 25-31
  • 14 Kadota RP, Emslander HC, Sawada Y, Fass DN, Katzmann JA, Bowie EJ. The capillary thrombometer and von Willebrand factor. Thromb Res 1987; 45 (03) 235-248
  • 15 Uchiyama S, Stropp JQ, Claypool DA, Didisheim P. Filter bleeding time: a new in vitro test of hemostasis. II. Application to the study of von Willebrand disease and platelet function inhibitors. Thromb Res 1983; 31 (01) 117-125
  • 16 Boda Z, Tornai I, Rak K. Studies of the platelet filter test (shear dependent platelet aggregation) in patients with uncommon haemorrhagic disorders. Blood Coagul Fibrinolysis 1996; 7 (02) 162-164
  • 17 Cariappa R, Wilhite TR, Parvin CA, Luchtman-Jones L. Comparison of PFA-100 and bleeding time testing in pediatric patients with suspected hemorrhagic problems. J Pediatr Hematol Oncol 2003; 25 (06) 474-479
  • 18 Cattaneo M, Federici AB, Lecchi A. et al. Evaluation of the PFA-100 system in the diagnosis and therapeutic monitoring of patients with von Willebrand disease. Thromb Haemost 1999; 82 (01) 35-39
  • 19 Chen YC, Yang L, Cheng SN, Hu SH, Chao TY. von Willebrand disease: a clinical and laboratory study of sixty-five patients. Ann Hematol 2011; 90 (10) 1183-1190
  • 20 Dargaud Y, Bordet JC, Trzeciak MC, Mazet M, Dechavanne M, Negrier C. Inherited bleeding disorder due to familial type 2 platelet cyclo-oxygenase deficiency. Thromb Res 2005; 116 (06) 483-489
  • 21 Dean JA, Blanchette VS, Carcao MD. et al. von Willebrand disease in a pediatric-based population–comparison of type 1 diagnostic criteria and use of the PFA-100 and a von Willebrand factor/collagen-binding assay. Thromb Haemost 2000; 84 (03) 401-409
  • 22 Franchini M, Gandini G, Manzato F, Lippi G. Evaluation of the PFA-100 system for monitoring desmopressin therapy in patients with type 1 von Willebrand's disease. Haematologica 2002; 87 (06) 670
  • 23 Fressinaud E, Veyradier A, Sigaud M, Boyer-Neumann C, Le Boterff C, Meyer D. Therapeutic monitoring of von Willebrand disease: interest and limits of a platelet function analyser at high shear rates. Br J Haematol 1999; 106 (03) 777-783
  • 24 Fressinaud E, Veyradier A, Truchaud F. et al. Screening for von Willebrand disease with a new analyzer using high shear stress: a study of 60 cases. Blood 1998; 91 (04) 1325-1331
  • 25 Harrison C, Khair K, Baxter B, Russell-Eggitt I, Hann I, Liesner R. Hermansky-Pudlak syndrome: infrequent bleeding and first report of Turkish and Pakistani kindreds. Arch Dis Child 2002; 86 (04) 297-301
  • 26 Kerényi A, Schlammadinger A, Ajzner E. et al. Comparison of PFA-100 closure time and template bleeding time of patients with inherited disorders causing defective platelet function. Thromb Res 1999; 96 (06) 487-492
  • 27 Mammen EF, Comp PC, Gosselin R. et al. PFA-100 system: a new method for assessment of platelet dysfunction. Semin Thromb Hemost 1998; 24 (02) 195-202
  • 28 Nitu-Whalley IC, Lee CA, Brown SA, Riddell A, Hermans C. The role of the platelet function analyser (PFA-100) in the characterization of patients with von Willebrand's disease and its relationships with von Willebrand factor and the ABO blood group. Haemophilia 2003; 9 (03) 298-302
  • 29 Penas N, Pérez-Rodríguez A, Torea JH. et al. von Willebrand disease R1374C: type 2A or 2M? A challenge to the revised classification. High frequency in the northwest of Spain (Galicia). Am J Hematol 2005; 80 (03) 188-196
  • 30 Philipp CS, Miller CH, Faiz A. et al. Screening women with menorrhagia for underlying bleeding disorders: the utility of the platelet function analyser and bleeding time. Haemophilia 2005; 11 (05) 497-503
  • 31 Podda GM, Bucciarelli P, Lussana F, Lecchi A, Cattaneo M. Usefulness of PFA-100 testing in the diagnostic screening of patients with suspected abnormalities of hemostasis: comparison with the bleeding time. J Thromb Haemost 2007; 5 (12) 2393-2398
  • 32 Posan E, McBane RD, Grill DE, Motsko CL, Nichols WL. Comparison of PFA-100 testing and bleeding time for detecting platelet hypofunction and von Willebrand disease in clinical practice. Thromb Haemost 2003; 90 (03) 483-490
  • 33 Quiroga T, Goycoolea M, Muñoz B. et al. Template bleeding time and PFA-100 have low sensitivity to screen patients with hereditary mucocutaneous hemorrhages: comparative study in 148 patients. J Thromb Haemost 2004; 2 (06) 892-898
  • 34 Rand ML, Carcao MD, Blanchette VS. Use of the PFA-100 in the assessment of primary, platelet-related hemostasis in a pediatric setting. Semin Thromb Hemost 1998; 24 (06) 523-529
  • 35 Schlammadinger A, Kerenyi A, Muszbek L, Boda Z. Comparison of the O'Brien filter test and the PFA-100 platelet analyzer in the laboratory diagnosis of von Willebrand's disease. Thromb Haemost 2000; 84 (01) 88-92
  • 36 Wuillemin WA, Gasser Ka, Zeerleder SS, Lämmle B. Evaluation of a platelet function analyser (PFA-100) in patients with a bleeding tendency. Swiss Med Wkly 2002; 132 (31-32): 443-448
  • 37 Srichumpuang C, Sosothikul D. Comparison between bleeding time and PFA-200 to evaluate platelet function disorder in children. J Pediatr Hematol Oncol 2021; 43 (05) e748-e749
  • 38 Brazilek RJ, Tovar-Lopez FJ, Wong AKT. et al. Application of a strain rate gradient microfluidic device to von Willebrand's disease screening. Lab Chip 2017; 17 (15) 2595-2608
  • 39 Cheeseman JE, Mills SP, Hardisty RM. Platelet aggregometry on whole blood: the use of the ELT 8/ds blood cell counter in the investigation of bleeding disorders. Clin Lab Haematol 1984; 6 (03) 265-272
  • 40 Kundu SK, Heilmann EJ, Sio R, Garcia C, Davidson RM, Ostgaard RA. Description of an in vitro platelet function analyzer–PFA-100. Semin Thromb Hemost 1995; 21 (Suppl. 02) 106-112
  • 41 Kratzer MA, Born GV. Simulation of primary haemostasis in vitro. Haemostasis 1985; 15 (06) 357-362
  • 42 Favaloro EJ, Pasalic L, Lippi G. Towards 50 years of platelet function analyser (PFA) testing. Clin Chem Lab Med 2022; 61 (05) 851-860
  • 43 Favaloro EJ. Utility of the platelet function analyser (PFA-100/200) for exclusion or detection of von Willebrand disease: a study 22 years in the making. Thromb Res 2020; 188: 17-24
  • 44 Abstracts from the 10th Erfurt Conference on Platelets. June 20-23, 2004. Erfurt, Germany. Platelets 2004; 15 (08) 479-517
  • 45 Cardinal DC, Flower RJ. The 'electronic platelet aggregometer' [proceedings]. Br J Pharmacol 1979; 66 (01) 138P
  • 46 Hartert H. [Blood clotting studies with thrombus stressography; a new investigation procedure]. Klin Wochenschr 1948; 26 (37-38): 577-583
  • 47 Connelly CR, Yonge JD, McCully SP. et al. Assessment of three point-of-care platelet function assays in adult trauma patients. J Surg Res 2017; 212: 260-269
  • 48 Agarwal S, Johnson RI, Shaw M. Preoperative point-of-care platelet function testing in cardiac surgery. J Cardiothorac Vasc Anesth 2015; 29 (02) 333-341
  • 49 Li CK, Hoffmann TJ, Hsieh PY, Malik S, Watson WC. The xylum clot signature analyzer: a dynamic flow system that simulates vascular injury. Thromb Res 1998; 92 (6, Suppl 2): S67-S77
  • 50 Muga KM, Melton LG, Gabriel DA. A flow dynamic technique used to assess global haemostasis. Blood Coagul Fibrinolysis 1995; 6 (01) 73-78
  • 51 Harrison P, Robinson MS, Mackie IJ. et al. Performance of the platelet function analyser PFA-100 in testing abnormalities of primary haemostasis. Blood Coagul Fibrinolysis 1999; 10 (01) 25-31
  • 52 Ardillon L, Ternisien C, Fouassier M. et al. Platelet function analyser (PFA-100) results and von Willebrand factor deficiency: a 16-year 'real-world' experience. Haemophilia 2015; 21 (05) 646-652
  • 53 Carcao MD, Blanchette VS, Dean JA. et al. The platelet function analyzer (PFA-100): a novel in-vitro system for evaluation of primary haemostasis in children. Br J Haematol 1998; 101 (01) 70-73
  • 54 Kumar R, Bouskill V, Schneiderman JE. et al. Impact of aerobic exercise on haemostatic indices in paediatric patients with haemophilia. Thromb Haemost 2016; 115 (06) 1120-1128
  • 55 Perez Botero J, Pruthi RK, Majerus JA. et al. Practice patterns in the diagnosis of inherited platelet disorders within a single institution. Blood Coagul Fibrinolysis 2017; 28 (04) 303-308
  • 56 Favaloro EJ, Facey D, Henniker A. Use of a novel platelet function analyzer (PFA-100) with high sensitivity to disturbances in von Willebrand factor to screen for von Willebrand's disease and other disorders. Am J Hematol 1999; 62 (03) 165-174
  • 57 Buyukasik Y, Karakus S, Goker H. et al. Rational use of the PFA-100 device for screening of platelet function disorders and von Willebrand disease. Blood Coagul Fibrinolysis 2002; 13 (04) 349-353
  • 58 Casonato A, Galletta E, Daidone V. The elusive and heterogeneous pattern of type 2M von Willebrand disease: a diagnostic challenge. Eur J Haematol 2018
  • 59 Naik S, Teruya J, Dietrich JE, Jariwala P, Soundar E, Venkateswaran L. Utility of platelet function analyzer as a screening tool for the diagnosis of von Willebrand disease in adolescents with menorrhagia. Pediatr Blood Cancer 2013; 60 (07) 1184-1187
  • 60 Harrison P, Robinson M, Liesner R. et al. The PFA-100: a potential rapid screening tool for the assessment of platelet dysfunction. Clin Lab Haematol 2002; 24 (04) 225-232
  • 61 Nitu-Whalley IC, Lee CA, Hermans C. Reassessment of the correlation between the von Willebrand factor activity, the PFA-100, and the bleeding time in patients with von Willebrand disease. Thromb Haemost 2001; 86 (02) 715-716
  • 62 Veyradier A, Gervaise A, Boyer-Neumann C, Wolf M, Fernandez H. Screening for bleeding disorders in women with menorrhagia using a platelet function analyzer. J Thromb Haemost 2006; 4 (02) 483-485
  • 63 Gursel T, Biri A, Kaya Z, Sivaslıoglu S, Albayrak M. The frequency of menorrhagia and bleeding disorders in university students. Pediatr Hematol Oncol 2014; 31 (05) 467-474
  • 64 Nummi V, Lassila R, Joutsi-Korhonen L, Armstrong E, Szanto T. Comprehensive re-evaluation of historical von Willebrand disease diagnosis in association with whole blood platelet aggregation and function. Int J Lab Hematol 2018; 40 (03) 304-311
  • 65 Haas T, Cushing MM, Varga S, Gilloz S, Schmugge M. Usefulness of multiple electrode aggregometry as a screening tool for bleeding disorders in a pediatric hospital. Platelets 2019; 30 (04) 498-505
  • 66 Koessler J, Ehrenschwender M, Kobsar A, Brunner K. Evaluation of the new INNOVANCE® PFA P2Y cartridge in patients with impaired primary haemostasis. Platelets 2012; 23 (08) 571-578
  • 67 Veyradier A, Fressinaud E, Boyer-Neumann C, Trossaert M, Meyer D. von Willebrand factor ristocetin cofactor activity correlates with platelet function in a high shear stress system. Thromb Haemost 2000; 84 (04) 727-728
  • 68 Charpy J, Chaghouri PE, Benattar N. et al. Evaluation of the potential utility of the total thrombus-formation analysis system in comparison to the platelet function analyser in subjects with primary haemostatic defects. Br J Haematol 2020; 191 (01) e7-e10
  • 69 Favaloro EJ. Template bleeding time and PFA-100 have low sensitivity to screen patients with hereditary mucocutaneous hemorrhages: comparative study of 148 patients–a rebuttal. J Thromb Haemost 2004; 2 (12) 2280-2282 , author reply 2283–2285
  • 70 Favaloro EJ, Patterson D, Denholm A. et al. Differential identification of a rare form of platelet-type (pseudo-) von Willebrand disease (VWD) from type 2B VWD using a simplified ristocetin-induced-platelet-agglutination mixing assay and confirmed by genetic analysis. Br J Haematol 2007; 139 (04) 623-626
  • 71 Favaloro EJ, Lloyd J, Rowell J. et al. Comparison of the pharmacokinetics of two von Willebrand factor concentrates [Biostate and AHF (high purity)] in people with von Willebrand disorder. A randomised cross-over, multi-centre study. Thromb Haemost 2007; 97 (06) 922-930
  • 72 Akin M, Karapinar DY, Balkan C, Ay Y, Kavakli K. Resemblance to vWD types and laboratory diagnosis of obligatory carriers of type 3 von Willebrand disease. Clin Appl Thromb Hemost 2011; 17 (06) E21-E24
  • 73 Perel JM, Just S, Rowell J, Williams B, Kennedy GA. Utility of the PFA-100 analyser in the evaluation of primary haemostasis in a paediatric population. Int J Lab Hematol 2007; 29 (06) 480-481
  • 74 Bakr S, Almutairi AA, Dawalibi A, Owaidah M, Almughiyri AA, Owaidah T. Screening hemostatic defects in Saudi University students with unexplained menorrhagia: a diagnosis, which could be missed. Blood Coagul Fibrinolysis 2021; 32 (04) 278-284
  • 75 Cakı Kılıç S, Sarper N, Zengin E, Aylan Gelen S. Screening bleeding disorders in adolescents and young women with menorrhagia. Turk J Haematol 2013; 30 (02) 168-176
  • 76 Valarche V, Desconclois C, Boutekedjiret T, Dreyfus M, Proulle V. Multiplate whole blood impedance aggregometry: a new tool for von Willebrand disease. J Thromb Haemost 2011; 9 (08) 1645-1647
  • 77 Sap F, Kavaklı T, Kavaklı K, Dizdarer C. The prevalence of von Willebrand disease and significance of in vitro bleeding time (PFA-100) in von Willebrand disease screening in the İzmir region. Turk J Haematol 2013; 30 (01) 40-47
  • 78 Geevar T, Dave RG, Mathews NS. et al. Laboratory characterization of obligate carriers of type 3 von Willebrand disease with a potential role for platelet function analyzer (PFA-200). Int J Lab Hematol 2022; 44 (03) 603-609
  • 79 Favaloro EJ. Clinical utility of the PFA-100. Semin Thromb Hemost 2008; 34 (08) 709-733
  • 80 Favaloro EJ, Kershaw G, Bukuya M, Hertzberg M, Koutts J. Laboratory diagnosis of von Willebrand disorder (vWD) and monitoring of DDAVP therapy: efficacy of the PFA-100 and vWF:CBA as combined diagnostic strategies. Haemophilia 2001; 7 (02) 180-189
  • 81 Akin M, Karapinar DY, Balkan C, Ay Y, Kavakli K. An evaluation of the DDAVP infusion test with PFA-100 and vWF activity assays to distinguish vWD types in children. Clin Appl Thromb Hemost 2011; 17 (05) 441-448
  • 82 Karger R, Donner-Banzhoff N, Müller HH, Kretschmer V, Hunink M. Diagnostic performance of the platelet function analyzer (PFA-100) for the detection of disorders of primary haemostasis in patients with a bleeding history-a systematic review and meta-analysis. Platelets 2007; 18 (04) 249-260
  • 83 Callaghan MU, Chitlur MB, Fleming P, Rajpurkar M, Lusher JM. Thromboelastogram platelet mapping accurately predicts bleeding phenotype in Glanzmann thrombasthenia. Blood 2008; 112 (11) 4560-4560
  • 84 Moenen FCJI, Vries MJA, Nelemans PJ. et al. Screening for platelet function disorders with multiplate and platelet function analyzer. Platelets 2019; 30 (01) 81-87
  • 85 Al-Battat S, Rand ML, Bouskill V. et al. Glanzmann thrombasthenia platelets compete with transfused platelets, reducing the haemostatic impact of platelet transfusions. Br J Haematol 2018; 181 (03) 410-413
  • 86 Albanyan A, Al-Musa A, AlNounou R. et al. Diagnosis of Glanzmann thrombasthenia by whole blood impedance analyzer (MEA) vs. light transmission aggregometry. Int J Lab Hematol 2015; 37 (04) 503-508
  • 87 Bragadottir G, Birgisdottir ER, Gudmundsdottir BR. et al. Clinical phenotype in heterozygote and biallelic Bernard-Soulier syndrome–a case control study. Am J Hematol 2015; 90 (02) 149-155
  • 88 Acharya S, Barraclough J, Ibrahim MS. et al. The usefulness of the platelet function analyser (PFA-100) in screening for underlying bleeding disorders in women with menorrhagia. J Obstet Gynaecol 2008; 28 (03) 310-314
  • 89 Sladky JL, Klima J, Grooms L, Kerlin BA, O'Brien SH. The PFA-100 ® does not predict delta-granule platelet storage pool deficiencies. Haemophilia 2012; 18 (04) 626-629
  • 90 Santos XM, Bercaw-Pratt JL, Yee DL, Dietrich JE. Recurrent menorrhagia in an adolescent with a platelet secretion defect. J Pediatr Adolesc Gynecol 2011; 24 (02) e35-e38
  • 91 Rolf N, Knoefler R, Bugert P. et al. Clinical and laboratory phenotypes associated with the aspirin-like defect: a study in 17 unrelated families. Br J Haematol 2009; 144 (03) 416-424
  • 92 Knöfler R, Lohse J, Stächele J. et al. Significance of platelet function diagnostics for clarification of suspected battered child syndrome. Hamostaseologie 2014; 34 (Suppl. 01) S53-S56
  • 93 Lasne D, Baujat G, Mirault T. et al. Bleeding disorders in Lowe syndrome patients: evidence for a link between OCRL mutations and primary haemostasis disorders. Br J Haematol 2010; 150 (06) 685-688
  • 94 Scavone M, Germanovich K, Femia EA, Cattaneo M. Usefulness of the INNOVANCE PFA P2Y test cartridge for the detection of patients with congenital defects of the platelet P2Y12 receptor for adenosine diphosphate. Thromb Res 2014; 133 (02) 254-256
  • 95 Kaufmann J, Adler M, Alberio L, Nagler M. Utility of the platelet function analyzer in patients with suspected platelet function disorders: diagnostic accuracy study. TH Open 2020; 4 (04) e427-e436
  • 96 Guay J, Faraoni D, Bonhomme F, Borel Derlon A, Lasne D. Ability of hemostatic assessment to detect bleeding disorders and to predict abnormal surgical blood loss in children: a systematic review and meta-analysis. Paediatr Anaesth 2015; 25 (12) 1216-1226
  • 97 Roschitz B, Thaller S, Koestenberger M. et al. PFA-100 closure times in preoperative screening in 500 pediatric patients. Thromb Haemost 2007; 98 (01) 243-247
  • 98 Koscielny J, von Tempelhoff GF, Ziemer S. et al. A practical concept for preoperative management of patients with impaired primary hemostasis. Clin Appl Thromb Hemost 2004; 10 (02) 155-166
  • 99 van Vliet HH, Kappers-Klunne MC, Leebeek FW, Michiels JJ. PFA-100 monitoring of von Willebrand factor (VWF) responses to desmopressin (DDAVP) and factor VIII/VWF concentrate substitution in von Willebrand disease type 1 and 2. Thromb Haemost 2008; 100 (03) 462-468
  • 100 Hanebutt FL, Rolf N, Loesel A, Kuhlisch E, Siegert G, Knoefler R. Evaluation of desmopressin effects on haemostasis in children with congenital bleeding disorders. Haemophilia 2008; 14 (03) 524-530
  • 101 Akin M. Response to low-dose desmopressin by a subcutaneous route in children with type 1 von Willebrand disease. Hematology 2013; 18 (02) 115-118
  • 102 Favaloro EJ, Thom J, Patterson D. et al. Potential supplementary utility of combined PFA-100 and functional von Willebrand factor testing for the laboratory assessment of desmopressin and factor concentrate therapy in von Willebrand disease. Blood Coagul Fibrinolysis 2009; 20 (06) 475-483
  • 103 Meskal A, Vertessen F, Van der Planken M, Berneman ZN. The platelet function analyzer (PFA-100) may not be suitable for monitoring the therapeutic efficiency of von Willebrand concentrate in type III von Willebrand disease. Ann Hematol 1999; 78 (09) 426-430
  • 104 Pekrul I, Kragh T, Turecek PL, Novack AR, Ott HW, Spannagl M. Sensitive and specific assessment of recombinant von Willebrand factor in platelet function analyzer. Platelets 2019; 30 (02) 264-270
  • 105 Trossaërt M, Flaujac C, Jeanpierre E. et al. Assessment of primary haemostasis with a new recombinant von Willebrand factor in patients with von Willebrand disease. Haemophilia 2020; 26 (02) e44-e48
  • 106 Castaman G, Tosetto A, Goodeve A. et al. The impact of bleeding history, von Willebrand factor and PFA-100(®) on the diagnosis of type 1 von Willebrand disease: results from the European study MCMDM-1VWD. Br J Haematol 2010; 151 (03) 245-251
  • 107 Ortel TL, James AH, Thames EH, Moore KD, Greenberg CS. Assessment of primary hemostasis by PFA-100 analysis in a tertiary care center. Thromb Haemost 2000; 84 (01) 93-97
  • 108 Favaloro EJ, Zafer M, Nair SC, Hertzberg M, North K. Evaluation of primary haemostasis in people with neurofibromatosis type 1. Clin Lab Haematol 2004; 26 (05) 341-345
  • 109 Tanous O, Steinberg Shemer O, Yacobovich J. et al. Evaluating platelet function disorders in children with bleeding tendency - a single center study. Platelets 2017; 28 (07) 676-681
  • 110 Weston H, Just S, Williams B, Rowell J, Kennedy GA. PFA-100 testing for pretherapeutic assessment of response to DDAVP in patients with von Willebrand's disease. Haemophilia 2009; 15 (01) 372-373
  • 111 Heubel-Moenen FCJI, Brouns SLN, Herfs L. et al. Multiparameter platelet function analysis of bleeding patients with a prolonged platelet function analyser closure time. Br J Haematol 2022; 196 (06) 1388-1400
  • 112 Hayward CP, Harrison P, Cattaneo M, Ortel TL, Rao AK. Platelet Physiology Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Platelet function analyzer (PFA)-100 closure time in the evaluation of platelet disorders and platelet function. J Thromb Haemost 2006; 4 (02) 312-319
  • 113 Favaloro EJ. Clinical utility of closure times using the platelet function analyzer-100/200. Am J Hematol 2017; 92 (04) 398-404
  • 114 Ogiwara K, Nogami K, Hosokawa K, Ohnishi T, Matsumoto T, Shima M. Comprehensive evaluation of haemostatic function in von Willebrand disease patients using a microchip-based flow chamber system. Haemophilia 2015; 21 (01) 71-80
  • 115 Daidone V, Barbon G, Cattini MG. et al. Usefulness of the total thrombus-formation analysis system (T-TAS) in the diagnosis and characterization of von Willebrand disease. Haemophilia 2016; 22 (06) 949-956
  • 116 Nakajima Y, Yada K, Ogiwara K. et al. A microchip flow-chamber assay screens congenital primary hemostasis disorders. Pediatr Int 2021; 63 (02) 160-167
  • 117 Nogami K, Ogiwara K, Yada K. et al. Assessing the clinical severity of type 1 von Willebrand disease patients with a microchip flow-chamber system. J Thromb Haemost 2016; 14 (04) 667-674
  • 118 Nakajima Y, Nogami K, Yada K. et al. Evaluation of clinical severity in patients with type 2N von Willebrand disease using microchip-based flow-chamber system. Int J Hematol 2020; 111 (03) 369-377
  • 119 Ågren A, Holmström M, Schmidt DE, Hosokawa K, Blombäck M, Hjemdahl P. Monitoring of coagulation factor therapy in patients with von Willebrand disease type 3 using a microchip flow chamber system. Thromb Haemost 2017; 117 (01) 75-85
  • 120 Minami H, Nogami K, Ogiwara K, Furukawa S, Hosokawa K, Shima M. Use of a microchip flow-chamber system as a screening test for platelet storage pool disease. Int J Hematol 2015; 102 (02) 157-162
  • 121 Lecchi A, La Marca S, Padovan L, Boscarino M, Peyvandi F, Tripodi A. Flow-chamber device (T-TAS) to diagnose patients suspected of platelet function defects. Blood Transfus 2023
  • 122 Al Ghaithi R, Mori J, Nagy Z. et al. Evaluation of the total thrombus-formation system (T-TAS): application to human and mouse blood analysis. Platelets 2019; 30 (07) 893-900
  • 123 Nakajima Y, Nogami K, Yada K. et al. Whole blood ristocetin-induced platelet impedance aggregometry does not reflect clinical severity in patients with type 1 von Willebrand disease. Haemophilia 2019; 25 (03) e174-e179
  • 124 Schmidt DE, Bruzelius M, Majeed A, Odeberg J, Holmström M, Ågren A. Whole blood ristocetin-activated platelet impedance aggregometry (Multiplate) for the rapid detection of Von Willebrand disease. Thromb Haemost 2017; 117 (08) 1528-1533
  • 125 Awidi A, Maqablah A, Dweik M, Bsoul N, Abu-Khader A. Comparison of platelet aggregation using light transmission and multiple electrode aggregometry in Glanzmann thrombasthenia. Platelets 2009; 20 (05) 297-301
  • 126 Castellino FJ, Liang Z, Davis PK. et al. Abnormal whole blood thrombi in humans with inherited platelet receptor defects. PLoS One 2012; 7 (12) e52878
  • 127 Al Ghaithi R, Drake S, Watson SP, Morgan NV, Harrison P. Comparison of multiple electrode aggregometry with lumi-aggregometry for the diagnosis of patients with mild bleeding disorders. J Thromb Haemost 2017; 15 (10) 2045-2052
  • 128 Lansdon LA, Chen D, Rush ET. et al. A novel likely pathogenic variant in a patient with Hermansky-Pudlak syndrome. Cold Spring Harb Mol Case Stud 2021; 7 (05) a006110
  • 129 Akay OM, Mutlu F, Gulbas Z. Platelet dysfunction and other hemostatic disorders in women with menorrhagia: the utility of whole blood lumi-aggregometer. Intern Emerg Med 2008; 3 (02) 191-193
  • 130 Mills HL, Abdel-Baki MS, Teruya J. et al. Platelet function defects in adolescents with heavy menstrual bleeding. Haemophilia 2014; 20 (02) 249-254
  • 131 Takeyama M, Kasuda S, Sakurai Y. et al. Factor VIII-mediated global hemostasis in the absence of von Willebrand factor. Int J Hematol 2007; 85 (05) 397-402
  • 132 Schmidt DE, Majeed A, Bruzelius M, Odeberg J, Holmström M, Ågren A. A prospective diagnostic accuracy study evaluating rotational thromboelastometry and thromboelastography in 100 patients with von Willebrand disease. Haemophilia 2017; 23 (02) 309-318
  • 133 Regling K, Kakulavarapu S, Thomas R, Hollon W, Chitlur MB. Utility of thromboelastography for the diagnosis of von Willebrand disease. Pediatr Blood Cancer 2019; 66 (07) e27714
  • 134 Szanto T, Nummi V, Jouppila A, Brinkman HJM, Lassila R. Platelets compensate for poor thrombin generation in type 3 von Willebrand disease. Platelets 2020; 31 (01) 103-111
  • 135 Wieland Greguare-Sander A, Wuillemin WA, Nagler M. Thromboelastometry as a diagnostic tool in mild bleeding disorders: a prospective cohort study. Eur J Anaesthesiol 2019; 36 (06) 457-465
  • 136 Tuman KJ, Spiess BD, Schoen RE, Ivankovich AD. Use of thromboelastography in the management of von Willebrand's disease during cardiopulmonary bypass. J Cardiothorac Anesth 1987; 1 (04) 321-324
  • 137 Topal A, Kılıçaslan A, Erol A, Çankaya B, Otelcioğlu Ş. Anaesthetic management with thromboelastography in a patient with Glanzmann thrombasthenia. Turk J Anaesthesiol Reanim 2014; 42 (04) 227-229
  • 138 Simha PP, Mohan Rao PS, Arakalgud D, Rajashekharappa R, Narasimhaih M. Perioperative management of a patient with Glanzmann's thrombasthenia for mitral valve repair under cardiopulmonary bypass. Ann Card Anaesth 2017; 20 (04) 468-471
  • 139 Pivalizza EG. Heparinase and thromboelastography in liver transplantation for a patient with von Willebrand's disease. Anesthesiology 1996; 84 (05) 1236-1239
  • 140 Pivalizza EG. Perioperative use of the thrombelastograph in patients with inherited bleeding disorders. J Clin Anesth 2003; 15 (05) 366-370
  • 141 Al Midani A, Donohue C, Berry P, Jones G, Fernando B. Use of thromboelastography to guide platelet infusion in a patient with Wiskott-Aldrich syndrome undergoing renal transplant. Exp Clin Transplant 2020; 18 (05) 636-637
  • 142 Favro M, Terrone C, Neira D. et al. Major surgery (radical cystectomy with urethrectomy) in a patient with von Willebrand's disease type I. Reliability and limits of hemocoagulative tests. Minerva Urol Nefrol 1998; 50 (04) 247-251
  • 143 Grassetto A, Fullin G, Lazzari F. et al. Perioperative ROTEM and ROTEMplatelet monitoring in a case of Glanzmann's thrombasthenia. Blood Coagul Fibrinolysis 2017; 28 (01) 96-99
  • 144 Guzman-Reyes S, Osborne C, Pivalizza EG. Thrombelastography for perioperative monitoring in patients with von Willebrand disease. J Clin Anesth 2012; 24 (02) 166-167
  • 145 Boyd EZ, Riha K, Escobar MA, Pivalizza EG. Thrombelastograph platelet mapping in a patient with von Willebrand disease who was treated with Humate-P. J Clin Anesth 2011; 23 (07) 600
  • 146 Campbell J, Yentis S. The use of thromboelastography for the peripartum management of a patient with platelet storage pool disorder. Int J Obstet Anesth 2011; 20 (04) 360 , author reply 361
  • 147 Clements A, Jindal S, Morris C, Srivastava G, Ikomi A, Mulholland J. Expanding perfusion across disciplines: the use of thrombelastography technology to reduce risk in an obstetrics patient with gray platelet syndrome–a case study. Perfusion 2011; 26 (03) 181-184
  • 148 Hale J, Galanti G, Langer A, Lassey S, Reiff E, Camann W. A case report of rotational thromboelastometry-assisted decision analysis for two pregnant patients with platelet storage pool disorder. A A Pract 2023; 17 (02) e01658
  • 149 Monte S, Lyons G. Peripartum management of a patient with Glanzmann's thrombasthenia using thrombelastograph. Br J Anaesth 2002; 88 (05) 734-738
  • 150 Palsson R, Vidarsson B, Gudmundsdottir BR. et al. Complementary effect of fibrinogen and rFVIIa on clotting ex vivo in Bernard-Soulier syndrome and combined use during three deliveries. Platelets 2014; 25 (05) 357-362
  • 151 Rajpal G, Pomerantz JM, Ragni MV, Waters JH, Vallejo MC. The use of thromboelastography for the peripartum management of a patient with platelet storage pool disorder. Int J Obstet Anesth 2011; 20 (02) 173-177
  • 152 Snow TA, Abdul-Kadir RA, Gomez K, England A. Platelet storage pool disorder in pregnancy: utilising thromboelastography to guide a risk-based delivery plan. Obstet Med 2022; 15 (02) 133-135
  • 153 Zia AN, Chitlur M, Rajpurkar M. et al. Thromboelastography identifies children with rare bleeding disorders and predicts bleeding phenotype. Haemophilia 2015; 21 (01) 124-132
  • 154 Shenkman B, Livnat T, Misgav M, Budnik I, Einav Y, Martinowitz U. The in vivo effect of fibrinogen and factor XIII on clot formation and fibrinolysis in Glanzmann's thrombasthenia. Platelets 2012; 23 (08) 604-610
  • 155 Budnik I, Shenkman B, Morozova O, Andreichyn J, Einav Y. Correction of coagulopathy in thrombocytopenia and Glanzmann thrombasthenia models by fibrinogen and factor XIII as assessed by thromboelastometry. Pathophysiology 2018; 25 (04) 347-351
  • 156 Ahammad J, Kamath A, Shastry S, Chitlur M, Kurien A. Clinico-hematological and thromboelastographic profiles in Glanzmann's thrombasthenia. Blood Coagul Fibrinolysis 2020; 31 (01) 29-34
  • 157 Barg AA, Hauschner H, Misgav M. et al. A novel approach using ancillary tests to guide treatment of Glanzmann thrombasthenia patients undergoing surgical procedures. Blood Cells Mol Dis 2018; 72: 44-48
  • 158 Male C, Koren D, Eichelberger B, Kaufmann K, Panzer S. Monitoring survival and function of transfused platelets in Glanzmann thrombasthenia by flow cytometry and thrombelastography. Vox Sang 2006; 91 (02) 174-177
  • 159 Lak M, Scharling B, Blemings A. et al. Evaluation of rFVIIa (NovoSeven) in Glanzmann patients with thromboelastogram. Haemophilia 2008; 14 (01) 103-110
  • 160 Horne III MK, Williams SB, Gahl WA, Rick ME. Evaluation of the xylum clot signature analyzer in normal subjects and patients with the Hermansky-Pudlak syndrome. Thromb Res 2001; 104 (01) 57-63
  • 161 Fricke W, Kouides P, Kessler C. et al. A multicenter clinical evaluation of the clot signature analyzer. J Thromb Haemost 2004; 2 (05) 763-768
  • 162 Varon D, Lashevski I, Brenner B. et al. Cone and plate(let) analyzer: monitoring glycoprotein IIb/IIIa antagonists and von Willebrand disease replacement therapy by testing platelet deposition under flow conditions. Am Heart J 1998; 135 (5 Pt 2 Su): S187-S193
  • 163 Shenkman B, Savion N, Dardik R, Tamarin I, Varon D. Testing of platelet deposition on polystyrene surface under flow conditions by the cone and plate(let) analyzer: role of platelet activation, fibrinogen and von Willebrand factor. Thromb Res 2000; 99 (04) 353-361
  • 164 Revel-Vilk S, Varon D, Shai E. et al. Evaluation of children with a suspected bleeding disorder applying the Impact-R [Cone and Plate(let) analyzer]. J Thromb Haemost 2009; 7 (12) 1990-1996
  • 165 Shenkman B, Einav Y, Salomon O, Varon D, Savion N. Testing agonist-induced platelet aggregation by the Impact-R [Cone and plate(let) analyzer (CPA)]. Platelets 2008; 19 (06) 440-446
  • 166 Lehmann M, Ashworth K, Manco-Johnson M, Di Paola J, Neeves KB, Ng CJ. Evaluation of a microfluidic flow assay to screen for von Willebrand disease and low von Willebrand factor levels. J Thromb Haemost 2018; 16 (01) 104-115
  • 167 Neeves KB, Onasoga AA, Hansen RR. et al. Sources of variability in platelet accumulation on type 1 fibrillar collagen in microfluidic flow assays. PLoS One 2013; 8 (01) e54680
  • 168 Grabowski EF, Curran MA, Van Cott EM. Assessment of a cohort of primarily pediatric patients with a presumptive diagnosis of type 1 von Willebrand disease with a novel high shear rate, non-citrated blood flow device. Thromb Res 2012; 129 (04) e18-e24
  • 169 Grabowski EF, Van Cott EM, Bornikova L, Boyle DC, Silva RL. Differentiation of patients with symptomatic low von Willebrand factor from those with asymptomatic low von Willebrand factor. Thromb Haemost 2020; 120 (05) 793-804
  • 170 Chen Z, Lu J, Zhang C. et al. Microclot array elastometry for integrated measurement of thrombus formation and clot biomechanics under fluid shear. Nat Commun 2019; 10 (01) 2051
  • 171 Zwaginga JJ, Nash G, King MR. et al; Biorheology Subcommittee of the SSC of the ISTH. Flow-based assays for global assessment of hemostasis. Part 1: biorheologic considerations. J Thromb Haemost 2006; 4 (11) 2486-2487
  • 172 Kazmi RS, Boyce S, Lwaleed BA. Homeostasis of hemostasis: the role of endothelium. Semin Thromb Hemost 2015; 41 (06) 549-555
  • 173 Schneider SW, Nuschele S, Wixforth A. et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A 2007; 104 (19) 7899-7903
  • 174 Yakusheva AA, Butov KR, Bykov GA. et al. Traumatic vessel injuries initiating hemostasis generate high shear conditions. Blood Adv 2022; 6 (16) 4834-4846
  • 175 Kalb ML, Potura L, Scharbert G, Kozek-Langenecker SA. The effect of ex vivo anticoagulants on whole blood platelet aggregation. Platelets 2009; 20 (01) 7-11
  • 176 Truss NJ, Armstrong PC, Liverani E, Vojnovic I, Warner TD. Heparin but not citrate anticoagulation of blood preserves platelet function for prolonged periods. J Thromb Haemost 2009; 7 (11) 1897-1905
  • 177 Germanovich K, Femia EA, Cheng CY, Dovlatova N, Cattaneo M. Effects of pH and concentration of sodium citrate anticoagulant on platelet aggregation measured by light transmission aggregometry induced by adenosine diphosphate. Platelets 2018; 29 (01) 21-26
  • 178 Schneider DJ, Tracy PB, Mann KG, Sobel BE. Differential effects of anticoagulants on the activation of platelets ex vivo. Circulation 1997; 96 (09) 2877-2883
  • 179 Packham MA, Bryant NL, Guccione MA, Kinlough-Rathbone RL, Mustard JF. Effect of the concentration of Ca2+ in the suspending medium on the responses of human and rabbit platelets to aggregating agents. Thromb Haemost 1989; 62 (03) 968-976
  • 180 Jones S, Evans RJ, Mahaut-Smith MP. Extracellular Ca(2+) modulates ADP-evoked aggregation through altered agonist degradation: implications for conditions used to study P2Y receptor activation. Br J Haematol 2011; 153 (01) 83-91
  • 181 Mani H, Hellis M, Lindhoff-Last E. Platelet function testing in hirudin and BAPA anticoagulated blood. Clin Chem Lab Med 2011; 49 (03) 501-507
  • 182 Chapman K, Favaloro EJ. Time dependent reduction in platelet aggregation using the multiplate analyser and hirudin blood due to platelet clumping. Platelets 2018; 29 (03) 305-308
  • 183 Hellstern P, Stürzebecher U, Wuchold B. et al. Preservation of in vitro function of platelets stored in the presence of a synthetic dual inhibitor of factor Xa and thrombin. J Thromb Haemost 2007; 5 (10) 2119-2126
  • 184 James PD, Connell NT, Ameer B. et al. ASH ISTH NHF WFH 2021 guidelines on the diagnosis of von Willebrand disease. Blood Adv 2021; 5 (01) 280-300
  • 185 Jigar Panchal H, Kent NJ, Knox AJS, Harris LF. Microfluidics in haemostasis: a review. Molecules 2020; 25 (04) 833
  • 186 Mohammadi Aria M, Erten A, Yalcin O. Technology advancements in blood coagulation measurements for point-of-care diagnostic testing. Front Bioeng Biotechnol 2019; 7: 395
  • 187 Kim CJ, Kim J, Sabaté Del Río J, Ki DY, Kim J, Cho YK. Fully automated light transmission aggregometry on a disc for platelet function tests. Lab Chip 2021; 21 (23) 4707-4715
  • 188 Sakurai Y, Hardy ET, Lam WA. Hemostasis-on-a-chip / incorporating the endothelium in microfluidic models of bleeding. Platelets 2023; 34 (01) 2185453
  • 189 Liang HP, Morel-Kopp MC, Curtin J. et al. Heterozygous loss of platelet glycoprotein (GP) Ib-V-IX variably affects platelet function in velocardiofacial syndrome (VCFS) patients. Thromb Haemost 2007; 98 (06) 1298-1308