RSS-Feed abonnieren

DOI: 10.1055/s-0044-1788271
A predictive score for atrial fibrillation in poststroke patients
Escore preditivo de fibrilação atrial em pacientes pós-AVCAutor*innen
Abstract
Background Atrial fibrillation (AF) is a risk factor for cerebral ischemia. Identifying the presence of AF, especially in paroxysmal cases, may take time and lacks clear support in the literature regarding the optimal investigative approach; in resource-limited settings, identifying a higher-risk group for AF can assist in planning further investigation.
Objective To develop a scoring tool to predict the risk of incident AF in the poststroke follow-up.
Methods A retrospective longitudinal study with data collected from electronic medical records of patients hospitalized and followed up for cerebral ischemia from 2014 to 2021 at a tertiary stroke center. Demographic, clinical, laboratory, electrocardiogram, and echocardiogram data, as well as neuroimaging data, were collected. Stepwise logistic regression was employed to identify associated variables. A score with integer numbers was created based on beta coefficients. Calibration and validation were performed to evaluate accuracy.
Results We included 872 patients in the final analysis. The score was created with left atrial diameter ≥ 42 mm (2 points), age ≥ 70 years (1 point), presence of septal aneurysm (2 points), and score ≥ 6 points at admission on the National Institutes of Health Stroke Scale (NIHSS; 1 point). The score ranges from 0 to 6. Patients with a score ≥ 2 points had a fivefold increased risk of having AF detected in the follow-up. The area under the curve (AUC) was of 0.77 (0.72–0.85).
Conclusion We were able structure an accurate risk score tool for incident AF, which could be validated in multicenter samples in future studies.
Resumo
Antecedentes Fibrilação atrial (FA) é um fator de risco para isquemia cerebral. Identificar a presença de FA, especialmente em casos paroxísticos, pode demandar tempo, e não há fundamentos claros na literatura quanto ao melhor método de proceder à investigação; em locais de parcos recursos, identificar um grupo de mais alto risco de FA pode auxiliar no planejamento da investigação complementar.
Objetivo Desenvolver uma ferramenta de escore para prever o risco de FA no acompanhamento após acidente vascular cerebral (AVC).
Métodos Estudo longitudinal retrospectivo, com dados coletados dos prontuários eletrônicos de pacientes hospitalizados e acompanhados ambulatorialmente por isquemia cerebral, de 2014 a 2021, em um centro de AVC terciário. Foram coleados dados demográficos, clínicos, laboratoriais, de eletrocardiograma e ecocardiograma, além de dados de neuroimagem. Mediante uma regressão logística por stepwise, foram identificadas variáveis associadas. Um escore com números inteiros foi criado com base nos coeficientes beta. Calibração e validação foram realizadas para avaliar a precisão.
Resultados Foram incluídos 872 pacientes na análise final. O escore foi criado com diâmetro de átrio esquerdo ≥ 42 mm (2 pontos), idade ≥ 70 anos (1 ponto), presença de aneurisma septal (2 pontos) e pontuação à admissão ≥ 6 na escala de AVC dos National Institutes of Health (National Institutes of Health Stroke Scale, NIHSS, em inglês; 1 ponto). O escore tem pontuação que varia de 0 a 6. Pacientes com escore ≥ 2 pontos tiveram cinco vezes mais risco de terem FA detectada no acompanhamento. A área sob a curva (area under curve, AUC, em inglês) foi de 0.77 (0.72–0.85).
Conclusão Pudemos estruturar uma ferramenta precisa de escore de risco de FA, a qual poderá ser validada em amostras multicêntricas em estudos futuros.
Authors' Contributions
CTT: conceptualization or design of the work, data acquisition, analysis or interpretation, writing or reviewing the manuscript; VR: data acquisition, analysis or interpretation, writing or reviewing the manuscript; AR: data acquisition, analysis or interpretation; LCMB: analysis or interpretation, writing or reviewing the manuscript; GSS: analysis or interpretation, writing or reviewing the manuscript; JBCA: analysis or interpretation, writing or reviewing the manuscript. All authors approved the final version of the manuscript and agree to be responsible for all aspects of the work.
Publikationsverlauf
Eingereicht: 19. Februar 2024
Angenommen: 27. Mai 2024
Artikel online veröffentlicht:
15. August 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Caroliny Trevisan Teixeira, Vanessa Rizelio, Alexandre Robles, Levi Coelho Maia Barros, Gisele Sampaio Silva, João Brainer Clares de Andrade. A predictive score for atrial fibrillation in poststroke patients. Arq Neuropsiquiatr 2024; 82: s00441788271.
DOI: 10.1055/s-0044-1788271
-
References
- 1 Cavallera V, Cousin E, Hagins H. et al; GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol 2024; 23 (04) 344-381
- 2 Adams Jr HP, Bendixen BH, Kappelle LJ. et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993; 24 (01) 35-41
- 3 Kamel H, Okin PM, Longstreth Jr WT, Elkind MS, Soliman EZ. Atrial cardiopathy: a broadened concept of left atrial thromboembolism beyond atrial fibrillation. Future Cardiol 2015; 11 (03) 323-331
- 4 Di Carlo A, Lamassa M, Pracucci G. et al. Stroke in the very old: clinical presentation and determinants of 3-month functional outcome: a European perspective. Stroke 2013; 44 (01) 218-221
- 5 Kamel H, Longstreth Jr WT, Tirschwell DL. et al; ARCADIA Investigators. Apixaban to Prevent Recurrence After Cryptogenic Stroke in Patients With Atrial Cardiopathy: The ARCADIA Randomized Clinical Trial. JAMA 2024; 331 (07) 573-581
- 6 Dhamoon MS, Sciacca RR, Rundek T, Sacco RL, Elkind MS. Recurrent stroke and cardiac risks after first ischemic stroke: the Northern Manhattan Study. Neurology 2006; 66 (05) 641-646 . PMID: 16534100
- 7 Hart RG, Catanese L, Perera KS, Ntaios G, Connolly SJ. Embolic stroke of undetermined source: a systematic review and clinical update. Stroke 2017; 48 (04) 867-872
- 8 Brambatti M, Connolly SJ, Gold MR. et al; ASSERT Investigators. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation 2014; 129 (21) 2094-2099 . PMID: 24633881
- 9 Diener HC, Easton JD, Granger CB. et al; RE-SPECT ESUS Investigators. Design of Randomized, double-blind, Evaluation in secondary Stroke Prevention comparing the EfficaCy and safety of the oral Thrombin inhibitor dabigatran etexilate vs. acetylsalicylic acid in patients with Embolic Stroke of Undetermined Source (RE-SPECT ESUS). Int J Stroke 2015; 10 (08) 1309-1312
- 10 Kamel H, Longstreth Jr WT, Tirschwell DL. et al. The AtRial Cardiopathy and Antithrombotic Drugs In prevention After cryptogenic stroke randomized trial: Rationale and methods. Int J Stroke 2019; 14 (02) 207-214 . Epub 2018 Sep 10. PMID: 30196789; PMCID: PMC6645380
- 11 Sanna T, Diener HC, Passman RS. et al; CRYSTAL AF Investigators. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 2014; 370 (26) 2478-2486 . PMID: 24963567
- 12 Figueiredo MM, Rodrigues ACT, Alves MB, Neto MC, Silva GS. Score for atrial fibrillation detection in acute stroke and transient ischemic attack patients in a Brazilian population: the acute stroke atrial fibrillation scoring system. Clinics (São Paulo) 2014; 69 (04) 241-246
- 13 de Andrade JBC, Mohr JP, Lima FO. et al. Predicting hemorrhagic transformation in patients not submitted to reperfusion therapies. J Stroke Cerebrovasc Dis 2020; 29 (08) 104940
- 14 Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med 1995; 155 (05) 469-473
- 15 Hacke W, Donnan G, Fieschi C. et al; ATLANTIS Trials Investigators, ECASS Trials Investigators, NINDS rt-PA Study Group Investigators. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 2004; 363 (9411) 768-774
- 16 Tseng AS, Noseworthy PA. Prediction of atrial fibrillation using machine learning: A review. Front Physiol 2021; 12: 752317
- 17 Gadaleta M, Harrington P, Barnhill E. et al. Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias. NPJ Digit Med 2023; 6 (01) 229
- 18 Poli S, Barbaro V, Bartolini P, Calcagnini G, Censi F. Prediction of atrial fibrillation from surface ECG: review of methods and algorithms. Ann Ist Super Sanita 2003; 39 (02) 195-203
- 19 Ebrahimzadeh E, Kalantari M, Joulani M, Shahraki RS, Fayaz F, Ahmadi F. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal. Comput Methods Programs Biomed 2018; 165: 53-67
- 20 Khurshid S, Kartoun U, Ashburner JM. et al. Performance of atrial fibrillation risk prediction models in over 4 million individuals. Circ Arrhythm Electrophysiol 2021; 14 (01) e008997
- 21 Alonso A, Roetker NS, Soliman EZ, Chen LY, Greenland P, Heckbert SR. Prediction of atrial fibrillation in a racially diverse cohort: The Multi-Ethnic Study of Atherosclerosis (MESA). J Am Heart Assoc 2016; 5 (02) e003077
- 22 Li Y-G, Pastori D, Farcomeni A. et al. A simple clinical risk score (C2HEST) for predicting incident atrial fibrillation in Asian subjects: Derivation in 471,446 Chinese subjects, with internal validation and external application in 451,199 Korean subjects. Chest 2019; 155 (03) 510-518
- 23 Hulme OL, Khurshid S, Weng L-C. et al. Development and validation of a prediction model for atrial fibrillation using electronic health records. JACC Clin Electrophysiol 2019; 5 (11) 1331-1341
- 24 Segan L, Canovas R, Nanayakkara S. et al. New-onset atrial fibrillation prediction: the HARMS2-AF risk score. Eur Heart J 2023; 44 (36) 3443-3452
- 25 Karnik S, Tan SL, Berg B. et al. Predicting atrial fibrillation and flutter using electronic health records. Annu Int Conf IEEE Eng Med Biol Soc 2012; 2012: 5562-5565
- 26 Schnabel RB, Sullivan LM, Levy D. et al. Abstract 1254: Development of a risk score for incident atrial fibrillation in the community; the Framingham Heart Study. Circulation 2008; 118 (Suppl. 18)
- 27 Suenari K, Chao T-F, Liu C-J, Kihara Y, Chen T-J, Chen S-A. Usefulness of HATCH score in the prediction of new-onset atrial fibrillation for Asians. Medicine (Baltimore) 2017; 96 (01) e5597
- 28 Graham LN, Kim MH. Sex Differences in Atrial Fibrillation: Clinical Implications and Management. Am J Cardiol 2018; 121 (02) 123-129
- 29 Jeong D, Hussain MA, Winchester R. et al. Regional Practice Patterns and Trends in Management Following Hospital Presentation for Heart Failure in a National Population-Based Cohort Study. J Am Heart Assoc 2019; 8 (15) e012546
- 30 Zimetbaum P, Goldman A. Ambulatory arrhythmia monitoring: choosing the right device. Am J Med 2016; 129 (08) 852-860
- 31 Tao Y, Xu J, Gong X, Sun J, Yang D. Premature atrial complexes can predict atrial fibrillation in ischemic stroke patients: A systematic review and meta-analysis. Pacing Clin Electrophysiol 2021; 44 (09) 1599-1606
- 32 Chamberlain AM, Agarwal SK, Folsom AR. et al. A clinical risk score for atrial fibrillation in a biracial prospective cohort (from the Atherosclerosis Risk in Communities [ARIC] study). Am J Cardiol 2011; 107 (01) 85-91
- 33 Aronson D, Shalev V, Katz R, Chodick G, Mutlak D. Risk score for prediction of 10-year atrial fibrillation: A community-based study. Thromb Haemost 2018; 118 (09) 1556-1563
- 34 Kamel H, Elkind MS, Bhave PD. et al. Paroxysmal Atrial Fibrillation and the Risk of Ischemic Stroke. Stroke 2013; 44 (03) 848-853
