CC BY 4.0 · Pharmaceutical Fronts 2024; 06(03): e237-e251
DOI: 10.1055/s-0044-1788722
Review Article

Pd-Catalyzed Asymmetric Allylic Substitution Cascade via Desymmetrization for the Construction of Chiral Polyheterocycles

Xuezhen Kou#
1   Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
,
Yongjin Xu#
2   State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan, People's Republic of China
,
Siqi Dong
3   Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
,
Hui Liu
2   State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan, People's Republic of China
,
Delong Liu
3   Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
,
Wanbin Zhang
1   Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
3   Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
› Author Affiliations
Funding This work was supported by the National Key R&D Program of China (Grant No. 2023YFA1506700) and the National Natural Science Foundation of China (Grant Nos. 2271185 and 21620102003). The authors also thank the Instrumental Analysis Center of Shanghai Jiao Tong University for its characterization.


Abstract

Chiral polyheterocycles represent an important class of compounds because of their prevalence in bioactive natural products and chiral drugs. Pd-catalyzed allylic substitution is a powerful synthetic tool for forming C–C and C–X bonds (X = N, O, S, etc.). Naturally, asymmetric cascade reactions that utilize allylic substitution are undoubtedly efficient pathways to construct heterocycles. In this article, we reviewed the Pd-catalyzed asymmetric allylic substitution cascade via the desymmetrization of meso-diol diesters of cycloolefins, for the construction of chiral polyheterocycles and their derivatives.

# These authors contributed equally to this work.




Publication History

Received: 13 April 2024

Accepted: 15 July 2024

Article published online:
06 August 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Tsuji J, Takahashi H, Morikawa M. Organic syntheses by means of noble metal compounds XVII. Reaction of π-allylpalladium chloride with nucleophiles. Tetrahedron Lett 1965; 6 (49) 4387-4388
  • 2 Trost BM. Cyclizations via palladium-catalyzed allylic alkylations. Angew Chem Int Ed Engl 1989; 28 (09) 1173-1192
  • 3 Trost BM, Van Vranken DL. Asymmetric transition metal-catalyzed allylic alkylations. Chem Rev 1996; 96 (01) 395-422
  • 4 Trost BM. Pd asymmetric allylic alkylation (AAA). A powerful synthetic tool. Chem Pharm Bull (Tokyo) 2002; 50 (01) 1-14
  • 5 Trost BM, Crawley ML. Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem Rev 2003; 103 (08) 2921-2944
  • 6 Trost BM. Asymmetric allylic alkylation, an enabling methodology. J Org Chem 2004; 69 (18) 5813-5837
  • 7 Trost BM, Machacek MR, Aponick A. Predicting the stereochemistry of diphenylphosphino benzoic acid (DPPBA)-based palladium-catalyzed asymmetric allylic alkylation reactions: a working model. Acc Chem Res 2006; 39 (10) 747-760
  • 8 Trost BM, Zhang T, Sieber JD. Catalytic asymmetric allylic alkylation employing heteroatom nucleophiles: a powerful method for C–X bond formation. Chem Sci (Camb) 2010; 1 (04) 427-440
  • 9 Trost BM. Pd- and Mo-catalyzed asymmetric allylic alkylation. Org Process Res Dev 2012; 16 (02) 185-194
  • 10 Trost BM, Rao M. Development of chiral sulfoxide ligands for asymmetric catalysis. Angew Chem Int Ed Engl 2015; 54 (17) 5026-5043
  • 11 Trost BM, Kalnmals CA. Annulative allylic alkylation reactions between dual electrophiles and dual nucleophiles: applications in complex molecule synthesis. Chemistry 2020; 26 (09) 1906-1921
  • 12 Trost BM, Fullerton TJ. New synthetic reactions. Allylic alkylation. J Am Chem Soc 1973; 95 (01) 292-294
  • 13 Trost BM, Dietsche TJ. New synthetic reactions. Asymmetric induction in allylic alkylations. J Am Chem Soc 1973; 95 (24) 8200-8201
  • 14 Trost BM, Strege PE. Asymmetric induction in catalytic allylic alkylation. J Am Chem Soc 1977; 99 (05) 1649-1651
  • 15 Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53 (02) 883-971
  • 16 Richard F, Clark P, Hannam A, Keenan T, Jean A, Arseniyadis S. Pd-Catalysed asymmetric allylic alkylation of heterocycles: a user's guide. Chem Soc Rev 2024; 53 (04) 1936-1983
  • 17 Pàmies O, Margalef J, Cañellas S. et al. Recent advances in enantioselective Pd-catalyzed allylic substitution: from design to applications. Chem Rev 2021; 121 (08) 4373-4505
  • 18 Butt NA, Zhang W. Transition metal-catalyzed allylic substitution reactions with unactivated allylic substrates. Chem Soc Rev 2015; 44 (22) 7929-7967
  • 19 Milhau L, Guiry PJ. Palladium-catalyzed enantioselective allylic substitution. Top Organomet Chem 2011; 38: 95-153
  • 20 Helmchen G, Pfaltz A. Phosphinooxazolines–a new class of versatile, modular P,N-ligands for asymmetric catalysis. Acc Chem Res 2000; 33 (06) 336-345
  • 21 Lu Z, Ma S. Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew Chem Int Ed Engl 2008; 47 (02) 258-297
  • 22 Lumbroso A, Cooke ML, Breit B. Catalytic asymmetric synthesis of allylic alcohols and derivatives and their applications in organic synthesis. Angew Chem Int Ed Engl 2013; 52 (07) 1890-1932
  • 23 Lou J, Wang Q, Wu P, Wang H, Zhou YG, Yu Z. Transition-metal mediated carbon-sulfur bond activation and transformations: an update. Chem Soc Rev 2020; 49 (13) 4307-4359
  • 24 Zhao G, Li W, Zhang J. Recent advances in palladium-catalyzed asymmetric Heck/Tsuji-Trost reactions of 1,n-dienes. Chemistry 2024; 30 (26) e202400076
  • 25 Butt N, Yang G, Zhang W. Allylic alkylations with enamine nucleophiles. Chem Rec 2016; 16 (06) 2683-2692
  • 26 Chattopadhyay AK, Hanessian S. Recent progress in the chemistry of daphniphyllum alkaloids. Chem Rev 2017; 117 (05) 4104-4146
  • 27 Li L, Chen Z, Zhang X, Jia Y. Divergent strategy in natural product total synthesis. Chem Rev 2018; 118 (07) 3752-3832
  • 28 Li G, Lou M, Qi X. A brief overview of classical natural product drug synthesis and bioactivity. Org Chem Front 2022; 9 (02) 517-571
  • 29 Hui C, Craggs L, Antonchick AP. Ring contraction in synthesis of functionalized carbocycles. Chem Soc Rev 2022; 51 (20) 8652-8675
  • 30 Sinha SK, Ghosh P, Jain S. et al. Transition-metal catalyzed C-H activation as a means of synthesizing complex natural products. Chem Soc Rev 2023; 52 (21) 7461-7503
  • 31 Malacria M. Selective preparation of complex polycyclic molecules from acyclic precursors via radical mediated- or transition metal-catalyzed cascade reactions. Chem Rev 1996; 96 (01) 289-306
  • 32 Zhang B, Studer A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem Soc Rev 2015; 44 (11) 3505-3521
  • 33 Ardkhean R, Caputo DFJ, Morrow SM, Shi H, Xiong Y, Anderson EA. Cascade polycyclizations in natural product synthesis. Chem Soc Rev 2016; 45 (06) 1557-1569
  • 34 Xuan J, Studer A. Radical cascade cyclization of 1,n-enynes and diynes for the synthesis of carbocycles and heterocycles. Chem Soc Rev 2017; 46 (14) 4329-4346
  • 35 Biemolt J, Ruijter E. Advances in palladium-catalyzed cascade cyclizations. Adv Synth Catal 2018; 360 (20) 3821-3871
  • 36 Holman KR, Stanko AM, Reisman SE. Palladium-catalyzed cascade cyclizations involving C-C and C-X bond formation: strategic applications in natural product synthesis. Chem Soc Rev 2021; 50 (14) 7891-7908
  • 37 Jiang S, Ma H, Yang R, Song XR, Xiao Q. Recent advances in the cascade reactions of enynols/diynols for the synthesis of carbo- and heterocycles. Org Chem Front 2022; 9 (20) 5643-5674
  • 38 Liu H, Wang L, Yu JT. Radical cascade cyclization of alkene-tethered compounds: versatile approach towards ring-fused polycyclic structures. Asian J Org Chem 2023; 12 (05) e202300101
  • 39 Zhang XS, Han YP, Liang YM. Recent advances in the cascade cyclization reactions of 1,7-enynes. Adv Synth Catal 2024; 366 (03) 324-356
  • 40 Volla CMR, Atodiresei I, Rueping M. Catalytic C-C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis. Chem Rev 2014; 114 (04) 2390-2431
  • 41 Zou L, Gao Y, Zhang Q. et al. Recent progress in asymmetric domino intramolecular cyclization/cascade reactions of substituted olefins. Chem Asian J 2023; 18 (18) e202300617
  • 42 Nanda SK. Asymmetric cascades of the π-allyl complex: a journey from transition-metal catalysis to metallaphotocatalysis. Chem Commun (Camb) 2023; 59 (76) 11298-11319
  • 43 Lin CF, Chien CW, Ojima I. Enantioselective Pd-catalyzed tandem allylic alkylation reaction using monodentate phosphoramidite ligands for the formal total synthesis of huperzine A. Org Chem Front 2014; 1 (09) 1062-1066
  • 44 Mao HL, Wang YX, Wang X, Wang HY, Hao WJ, Jiang B. Pd-Catalyzed asymmetric annulative dearomatization of phenols for regio- and enantioselective synthesis of spirocyclohexadienones. Org Lett 2023; 25 (32) 5963-5968
  • 45 Zhu JX, Pi F, Sun T. et al. Asymmetric 2,4-dienylation/[4 + 2] annulation cascade to construct fused frameworks via auto-tandem palladium catalysis. Org Lett 2023; 25 (20) 3682-3686
  • 46 Trost BM. Desymmetrization of prochiral diesters via transition metal catalyzed reactions. Isr J Chem 1997; 37 (01) 109-118
  • 47 Suzuki T. Recent topics in the desymmetrization of meso-diols. Tetrahedron Lett 2017; 58 (51) 4731-4739
  • 48 Merad J, Candy M, Pons JM, Bressy C. Catalytic enantioselective desymmetrization of meso compounds in total synthesis of natural products: towards an economy of chiral reagents. Synthesis 2017; 49 (09) 1938-1954
  • 49 Trost BM, Li L, Guile SD. A novel palladium-catalyzed cycloalkylation to isoxazoline 2-oxides. Application for the asymmetric synthesis of carbanucleosides. J Am Chem Soc 1992; 114 (22) 8745-8747
  • 50 Mahmud T. The C7N aminocyclitol family of natural products. Nat Prod Rep 2003; 20 (01) 137-166
  • 51 Chen X, Fan Y, Zheng Y, Shen Y. Properties and production of valienamine and its related analogues. Chem Rev 2003; 103 (05) 1955-1977
  • 52 Trost BM, Chupak LS, Lübbers T. Total synthesis of (±)- and (+)-valienamine via a strategy derived from new palladium-catalyzed reactions. J Am Chem Soc 1998; 120 (08) 1732-1740
  • 53 Kshirsagar TA, Moe ST, Portoghese PS. Stereospecific synthesis of pseudocodeine: [2,3]-sigmatropic rearrangement using selenium intermediates. J Org Chem 1998; 63 (05) 1704-1705
  • 54 Uchida K, Yokoshima S, Kan T, Fukuyama T. Total synthesis of (+/-)-morphine. Org Lett 2006; 8 (23) 5311-5313
  • 55 Nomura S, Arimitsu K, Yamaguchi S. et al. Synthesis of (±)-8-deisopropyladunctin B. Chem Pharm Bull (Tokyo) 2012; 60 (01) 94-103
  • 56 Dethe DH, Dherange BD. Total synthesis of adunctin B. J Org Chem 2018; 83 (06) 3392-3396
  • 57 Yoshizaki H, Satoh H, Sato Y, Nukui S, Shibasaki M, Mori M. Palladium-mediated asymmetric synthesis of cis-3,6-disubstituted cyclohexenes. A short total synthesis of optically active (+)-γ-lycorane. J Org Chem 1995; 60 (07) 2016-2021
  • 58 Liu D, Xie F, Zhang W. The synthesis of novel C 2-symmetric P,N-chelation ruthenocene ligands and their application in palladium-catalyzed asymmetric allylic substitution. Tetrahedron Lett 2007; 48 (04) 585-588
  • 59 Liu D, Xie F, Zhang W. Palladium-catalyzed asymmetric allylic alkylation with an enamine as the nucleophilic reagent. Tetrahedron Lett 2007; 48 (43) 7591-7594
  • 60 Zhao X, Liu D, Xie F, Zhang W. Enamines: efficient nucleophiles for the palladium-catalyzed asymmetric allylic alkylation. Tetrahedron 2009; 65 (02) 512-517
  • 61 Zhao X, Liu D, Xie F, Liu Y, Zhang W. Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes. Org Biomol Chem 2011; 9 (06) 1871-1875
  • 62 Xu K, Liu H, Hou Y, Shen J, Liu D, Zhang W. A Pd-catalyzed asymmetric allylic substitution cascade via an asymmetric desymmetrization for the synthesis of bicyclic dihydrofurans. Chem Commun (Camb) 2019; 55 (88) 13295-13298
  • 63 Cheng Q, Tu HF, Zheng C, Qu JP, Helmchen G, You SL. Iridium-catalyzed asymmetric allylic substitution reactions. Chem Rev 2019; 119 (03) 1855-1969
  • 64 Liu H, Sun Z, Xu K, Zheng Y, Liu D, Zhang W. Pd-Catalyzed asymmetric allylic substitution cascade of but-2-ene-1,4-diyl dimethyl dicarbonate for the synthesis of chiral 2,3-dihydrofurans. Org Lett 2020; 22 (12) 4680-4685
  • 65 Qiang Y, Chen YJ, Li Y, Zhao J, Gao K. Coumarin derivatives from Gerbera saxatilis. Planta Med 2011; 77 (02) 175-178
  • 66 Soman SS, Soni JN, Inamdar GS, Robertson GP. Synthesis and anticancer activity of 4-hydroxy naphtho coumarin derivatives and naphtho coumestans. Pharma Chem 2013; 5 (06) 201-207
  • 67 Qiao C, Zhang W, Han JC, Li CC. Catalytic enantioselective total synthesis of hypocrolide A. Org Lett 2016; 18 (19) 4932-4935
  • 68 Yoshida M, Shibata M, Mukae S, Kinoshita K, Matsumoto K, Hirokane T. Synthesis of pyrone-annulated 2-oxabicyclo[3.3.1]nonanes by palladium-catalyzed cyclization of 4-hydroxy-2-pyrones with allylic bisacetates. Tetrahedron Lett 2019; 60 (49) 151262-151266
  • 69 Zheng Y, Dong S, Xu K, Liu D, Zhang W. Pd-Catalyzed asymmetric allylic substitution cascade of substituted 4-hydroxy-2h-pyrones with meso-allyl dicarbonates. Org Lett 2022; 24 (19) 3440-3444
  • 70 Migliori GB, Dheda K, Centis R. et al. Review of multidrug-resistant and extensively drug-resistant TB: global perspectives with a focus on sub-Saharan Africa. Trop Med Int Health 2010; 15 (09) 1052-1066
  • 71 Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin Microbiol Rev 2010; 23 (01) 160-201
  • 72 Ersmark K, Del Valle JR, Hanessian S. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew Chem Int Ed Engl 2008; 47 (07) 1202-1223
  • 73 Sayago FJ, Laborda P, Isabel Calaza M, Jimenez AI, Cativiela C. Access to the cis-fused stereoisomers of proline analogues containing an octahydroindole core. Eur J Org Chem 2011; 2011 (11) 2011-2028
  • 74 An Q, Liu D, Shen J, Liu Y, Zhang W. The construction of chiral fused azabicycles using a Pd-catalyzed allylic substitution cascade and asymmetric desymmetrization strategy. Org Lett 2017; 19 (01) 238-241
  • 75 Xu K, Ye J, Liu H, Shen J, Liu D, Zhang W. Pd-Catalyzed asymmetric allylic substitution annulation using enolizable ketimines as nucleophiles: an alternative approach to chiral tetrahydroindoles. Adv Synth Catal 2020; 362 (10) 2059-2069
  • 76 Shimada N, Morimoto K, Naganawa H. et al. Antrimycin, a new peptide antibiotic. J Antibiot (Tokyo) 1981; 34 (12) 1613-1614
  • 77 Lingham RB, Hsu AHM, O'Brien JA. et al. Quinoxapeptins: novel chromodepsipeptide inhibitors of HIV-1 and HIV-2 reverse transcriptase. I. The producing organism and biological activity. J Antibiot (Tokyo) 1996; 49 (03) 253-259
  • 78 Rahier A, Taton M. Sterol biosynthesis: strong inhibition of maize delta 5,7-sterol delta 7-reductase by novel 6-aza-B-homosteroids and other analogs of a presumptive carbocationic intermediate of the reduction reaction. Biochemistry 1996; 35 (22) 7069-7076
  • 79 Ciufolini MA, Xi N. Synthesis, chemistry and conformational properties of piperazic acids. Chem Soc Rev 1998; 27 (06) 437-445
  • 80 Zhang L, Williams MA, Mendel DB. et al. Synthesis and evaluation of 1,4,5,6-tetrahydropyridazine derivatives as influenza neuraminidase inhibitors. Bioorg Med Chem Lett 1999; 9 (13) 1751-1756
  • 81 Oelke AJ, France DJ, Hofmann T, Wuitschik G, Ley SV. Piperazic acid-containing natural products: isolation, biological relevance and total synthesis. Nat Prod Rep 2011; 28 (08) 1445-1471
  • 82 Xu K, Zheng Y, Ye Y, Liu D, Zhang W. Desymmetrization of meso-dicarbonatecyclohexene with β-hydrazino carboxylic esters via a Pd-catalyzed allylic substitution cascade. Org Lett 2020; 22 (22) 8836-8841
  • 83 Dong S, Xu S, Zou Y. et al. The construction of chiral 3-acyl bicyclolactams via a RuPHOX/Pd catalyzed asymmetric allylic substitution cascade of α-carbonylamides. Org Chem Front 2023; 10 (07) 1731-1737
  • 84 Chapsal BD, Ojima I. Total synthesis of enantiopure (+)-γ-lycorane using highly efficient Pd-catalyzed asymmetric allylic alkylation. Org Lett 2006; 8 (07) 1395-1398
  • 85 Gais HJ, Bondarev O, Hetzer R. Palladium-catalyzed asymmetric synthesis of allylic alcohols from unsymmetrical and symmetrical racemic allylic carbonates featuring C–O-bond formation and dynamic kinetic resolution. Tetrahedron Lett 2005; 46 (37) 6279-6283
  • 86 Tsarev VN, Wolters D, Gais HJ. Redox reaction of the Pd(0) complex bearing the Trost ligand with meso-cycloalkene-1,4-biscarbonates leading to a diamidato Pd(II) complex and 1,3-cycloalkadienes: enantioselective desymmetrization versus catalyst deactivation. Chemistry 2010; 16 (09) 2904-2915
  • 87 Howe R, Rao BS. β-adrenergic blocking agents. 3. The optical isomers of pronethalol, propranolol, and several related compounds. J Med Chem 1968; 11 (06) 1118-1120
  • 88 Dukes M, Smith LH. β-adrenergic blocking agents. 9. Absolute configuration of propranolol and of a number of related aryloxypropanolamines and arylethanolamines. J Med Chem 1971; 14 (04) 326-328
  • 89 Bergmeier SC. The synthesis of vicinal amino alcohols. Tetrahedron 2000; 56 (17) 2561-2576
  • 90 Bhide RS, Keon A, Weigelt C. et al. Discovery and structure-based design of 4,6-diaminonicotinamides as potent and selective IRAK4 inhibitors. Bioorg Med Chem Lett 2017; 27 (21) 4908-4913
  • 91 Sauer M, Beemelmanns C. Application of pyrrolo-protected amino aldehydes in the stereoselective synthesis of anti-1,2-amino alcohols. Chem Commun (Camb) 2022; 58 (64) 8990-8993
  • 92 Ager DJ, Prakash I, Schaad DR. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem Rev 1996; 96 (02) 835-876
  • 93 Fache F, Schulz E, Tommasino ML, Lemaire M. Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis. Chem Rev 2000; 100 (06) 2159-2232
  • 94 Desimoni G, Faita G, Jørgensen KA. C(2)-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem Rev 2006; 106 (09) 3561-3651
  • 95 Connon R, Roche B, Rokade BV, Guiry PJ. Further developments and applications of oxazoline-containing ligands in asymmetric catalysis. Chem Rev 2021; 121 (11) 6373-6521
  • 96 Trost BM, Vanvranken DL. Flexible strategy to polyfunctional cyclopentanes. A synthesis of mannostatin A. J Am Chem Soc 1991; 113 (16) 6317-6318
  • 97 Trost BM, Vanvranken DL, Bingel C. A modular approach for ligand design for asymmetric allylic alkylations via enantioselective palladium-catalyzed ionizations. J Am Chem Soc 1992; 114 (24) 9327-9343
  • 98 Trost BM, Patterson DE. Enhanced enantioselectivity in the desymmetrization of meso-biscarbamates. J Org Chem 1998; 63 (04) 1339-1341
  • 99 Trost BM, Vanvranken DL. A general synthetic strategy toward aminocyclopentitol glycosidase inhibitors. Application of palladium catalysis to the synthesis of allosamizoline and mannostatin A. J Am Chem Soc 1993; 115 (02) 444-458
  • 100 Trost BM, Vanvranken DL. Asymmetric ligands for transition-metal-catalyzed reactions: 2-diphenylphosphinobenzoyl derivatives of C2-symmetric diols and diamines. Angew Chem Int Ed Engl 1992; 31 (02) 228-230
  • 101 Trost BM, Dong G. A stereodivergent strategy to both product enantiomers from the same enantiomer of a stereoinducing catalyst: agelastatin A. Chemistry 2009; 15 (28) 6910-6919
  • 102 Zhong C, Shi X. When organocatalysis meets transition-metal catalysis. Eur J Org Chem 2010; 2010 (16) 2999-3025
  • 103 Afewerki S, Córdova A. Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. Chem Rev 2016; 116 (22) 13512-13570
  • 104 Fu J, Huo X, Li B, Zhang W. Cooperative bimetallic catalysis in asymmetric allylic substitution. Org Biomol Chem 2017; 15 (46) 9747-9759
  • 105 Wu Y, Huo X, Zhang W. Synergistic Pd/Cu catalysis in organic synthesis. Chemistry 2020; 26 (22) 4895-4916