RSS-Feed abonnieren
DOI: 10.1055/s-0044-1789207
Role of Neutrophils in the Development of Steatotic Liver Disease
Funding This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT; grant no. 2022R1C1C1003563 to S.H. and grant no. 2021R1C1C2004529 to Y-J.C.).
Abstract
This review explores the biological aspects of neutrophils, their contributions to the development of steatotic liver disease, and their potential as therapeutic targets for the disease. Although alcohol-associated and metabolic dysfunction-associated liver diseases originate from distinct etiological factors, the two diseases frequently share excessive lipid accumulation as a common contributor to their pathogenesis, thereby classifying them as types of steatotic liver disease. Dysregulated lipid deposition in the liver induces hepatic injury, triggering the activation of the innate immunity, partially through neutrophil recruitment. Traditionally recognized for their role in microbial clearance, neutrophils have recently garnered attention for their involvement in sterile inflammation, a pivotal component of steatotic liver disease pathogenesis. In conclusion, technological innovations, including single-cell RNA sequencing, have gradually disclosed the existence of various neutrophil subsets; however, how the distinct subsets of neutrophil population contribute differentially to the development of steatotic liver disease remains unclear.
Keywords
neutrophil - steatosis - alcohol-associated liver disease - metabolic dysfunction-associated liver diseasePublikationsverlauf
Artikel online veröffentlicht:
08. August 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Wang H, Mehal W, Nagy LE, Rotman Y. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell Mol Immunol 2021; 18 (01) 73-91
- 2 Jeon S, Carr R. Alcohol effects on hepatic lipid metabolism. J Lipid Res 2020; 61 (04) 470-479
- 3 Tilg H, Adolph TE, Moschen AR. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: revisited after a decade. Hepatology 2021; 73 (02) 833-842
- 4 Yang YM, Cho YE, Hwang S. Crosstalk between oxidative stress and inflammatory liver injury in the pathogenesis of alcoholic liver disease. Int J Mol Sci 2022; 23 (02) 774
- 5 Chung KW, Cho YE, Kim SJ, Hwang S. Immune-related pathogenesis and therapeutic strategies of nonalcoholic steatohepatitis. Arch Pharm Res 2022; 45 (04) 229-244
- 6 Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci 2021; 22 (11) 5717
- 7 Dunn W, Shah VH. Pathogenesis of alcoholic liver disease. Clin Liver Dis 2016; 20 (03) 445-456
- 8 Kirpich IA, Parajuli D, McClain CJ. Microbiome in NAFLD and ALD. Clin Liver Dis (Hoboken) 2015; 6 (03) 55-58
- 9 Ray K. Manipulating the gut microbiota to combat alcoholic hepatitis. Nat Rev Gastroenterol Hepatol 2020; 17 (01) 3
- 10 Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology 2008; 47 (02) 729-736
- 11 Bajaj JS. Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol 2019; 16 (04) 235-246
- 12 Ha S, Wong VW, Zhang X, Yu J. Interplay between gut microbiome, host genetic and epigenetic modifications in MASLD and MASLD-related hepatocellular carcinoma. Gut 2024; gutjnl-2024- 332398
- 13 Parker R, Kim SJ, Gao B. Alcohol, adipose tissue and liver disease: mechanistic links and clinical considerations. Nat Rev Gastroenterol Hepatol 2018; 15 (01) 50-59
- 14 Colella F, Ramachandran P. Adipose tissue macrophage dysfunction in human MASLD - Cause or consequence?. J Hepatol 2024; 80 (03) 390-393
- 15 Fine N, Tasevski N, McCulloch CA, Tenenbaum HC, Glogauer M. The neutrophil: constant defender and first responder. Front Immunol 2020; 11: 571085
- 16 Rizo-Téllez SA, Sekheri M, Filep JG. Myeloperoxidase: regulation of neutrophil function and target for therapy. Antioxidants 2022; 11 (11) 2302
- 17 Gao B, Tsukamoto H. Inflammation in alcoholic and nonalcoholic fatty liver disease: Friend or foe?. Gastroenterology 2016; 150 (08) 1704-1709
- 18 Bertola A, Mathews S, Ki SH, Wang H, Gao B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 2013; 8 (03) 627-637
- 19 Bertola A, Park O, Gao B. Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: a critical role for E-selectin. Hepatology 2013; 58 (05) 1814-1823
- 20 Mathews S, Feng D, Maricic I, Ju C, Kumar V, Gao B. Invariant natural killer T cells contribute to chronic-plus-binge ethanol-mediated liver injury by promoting hepatic neutrophil infiltration. Cell Mol Immunol 2016; 13 (02) 206-216
- 21 Chang B, Xu MJ, Zhou Z. et al. Short- or long-term high-fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: an important role for CXCL1. Hepatology 2015; 62 (04) 1070-1085
- 22 Hwang S, He Y, Xiang X. et al. Interleukin-22 ameliorates neutrophil-driven nonalcoholic steatohepatitis through multiple targets. Hepatology 2020; 72 (02) 412-429
- 23 Hwang S, Wang X, Rodrigues RM. et al. Protective and detrimental roles of p38α mitogen-activated protein kinase in different stages of nonalcoholic fatty liver disease. Hepatology 2020; 72 (03) 873-891
- 24 Kim AD, Kim SE, Leszczynska A. et al. Dual role of neutrophils in modulating liver injury and fibrosis during development and resolution of diet-induced murine steatohepatitis. Sci Rep 2021; 11 (01) 24194
- 25 Cho YE, Kim Y, Kim SJ, Lee H, Hwang S. Overexpression of interleukin-8 promotes the progression of fatty liver to nonalcoholic steatohepatitis in mice. Int J Mol Sci 2023; 24 (20) 15489
- 26 Boivin G, Faget J, Ancey PB. et al. Durable and controlled depletion of neutrophils in mice. Nat Commun 2020; 11 (01) 2762
- 27 Gierlikowska B, Stachura A, Gierlikowski W, Demkow U. Phagocytosis, degranulation and extracellular traps release by neutrophils-the current knowledge, pharmacological modulation and future prospects. Front Pharmacol 2021; 12: 666732
- 28 Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol 2017; 7: 373
- 29 Paclet MH, Laurans S, Dupré-Crochet S. Regulation of neutrophil NADPH oxidase, NOX2: a crucial effector in neutrophil phenotype and function. Front Cell Dev Biol 2022; 10: 945749
- 30 Veenith T, Martin H, Le Breuilly M. et al. High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Sci Rep 2022; 12 (01) 10484
- 31 Cassatella MA, Östberg NK, Tamassia N, Soehnlein O. Biological roles of neutrophil-derived granule proteins and cytokines. Trends Immunol 2019; 40 (07) 648-664
- 32 Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19 (04) 253-275
- 33 Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 2006; 6 (07) 541-550
- 34 Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol 2014; 5: 448
- 35 Eichelberger KR, Goldman WE. Manipulating neutrophil degranulation as a bacterial virulence strategy. PLoS Pathog 2020; 16 (12) e1009054
- 36 Jaberi SA, Cohen A, D'Souza C. et al. Lipocalin-2: structure, function, distribution and role in metabolic disorders. Biomed Pharmacother 2021; 142: 112002
- 37 Nikolov A, Popovski N. Role of gelatinases MMP-2 and MMP-9 in healthy and complicated pregnancy and their future potential as preeclampsia biomarkers. Diagnostics (Basel) 2021; 11 (03) 480
- 38 Stock AJ, Kasus-Jacobi A, Pereira HA. The role of neutrophil granule proteins in neuroinflammation and Alzheimer's disease. J Neuroinflammation 2018; 15 (01) 240
- 39 Tang J, Yan Z, Feng Q, Yu L, Wang H. The roles of neutrophils in the pathogenesis of liver diseases. Front Immunol 2021; 12: 625472
- 40 Li T, Zhang Z, Li X. et al. Neutrophil extracellular traps: signaling properties and disease relevance. Mediators Inflamm 2020; 2020: 9254087
- 41 Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18 (02) 134-147
- 42 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663) 1532-1535
- 43 Shen H, Kreisel D, Goldstein DR. Processes of sterile inflammation. J Immunol 2013; 191 (06) 2857-2863
- 44 Erpenbeck L, Schön MP. Neutrophil extracellular traps: protagonists of cancer progression?. Oncogene 2017; 36 (18) 2483-2490
- 45 Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017; 23 (03) 279-287
- 46 Huang H, Tohme S, Al-Khafaji AB. et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 2015; 62 (02) 600-614
- 47 van der Windt DJ, Sud V, Zhang H. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018; 68 (04) 1347-1360
- 48 Wang H, Zhang H, Wang Y. et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. J Hepatol 2021; 75 (06) 1271-1283
- 49 Wu J, Zhang C, He T. et al. Polyunsaturated fatty acids drive neutrophil extracellular trap formation in nonalcoholic steatohepatitis. Eur J Pharmacol 2023; 945: 175618
- 50 Zhang H, Wang Y, Qu M. et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med 2023; 13 (01) e1170
- 51 Bukong TN, Cho Y, Iracheta-Vellve A. et al. Abnormal neutrophil traps and impaired efferocytosis contribute to liver injury and sepsis severity after binge alcohol use. J Hepatol 2018; 69 (05) 1145-1154
- 52 Okuda K, Neely BC, David CS. Expression of H-2 and Ia antigens on mouse peritoneal neutrophils. Transplantation 1979; 28 (04) 354-356
- 53 Fitzgerald JE, Sonis ST, Rodrick ML, Wilson RE. Interaction of Ia antigen-bearing polymorphonuclear leukocytes and murine splenocytes. Inflammation 1983; 7 (01) 25-33
- 54 Culshaw S, Millington OR, Brewer JM, McInnes IB. Murine neutrophils present Class II restricted antigen. Immunol Lett 2008; 118 (01) 49-54
- 55 Abadie V, Badell E, Douillard P. et al. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 2005; 106 (05) 1843-1850
- 56 Beauvillain C, Cunin P, Doni A. et al. CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 2011; 117 (04) 1196-1204
- 57 Yang W, Tao Y, Wu Y. et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun 2019; 10 (01) 1076
- 58 Li M, He Y, Zhou Z. et al. MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47phox-oxidative stress pathway in neutrophils. Gut 2017; 66 (04) 705-715
- 59 Ye D, Zhang T, Lou G, Liu Y. Role of miR-223 in the pathophysiology of liver diseases. Exp Mol Med 2018; 50 (09) 1-12
- 60 Ohms M, Möller S, Laskay T. An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro . Front Immunol 2020; 11: 532
- 61 Mihaila AC, Ciortan L, Macarie RD. et al. Transcriptional profiling and functional analysis of N1/N2 neutrophils reveal an immunomodulatory effect of S100A9-blockade on the pro-inflammatory N1 subpopulation. Front Immunol 2021; 12: 708770
- 62 Sounbuli K, Mironova N, Alekseeva L. Diverse neutrophil functions in cancer and promising neutrophil-based cancer therapies. Int J Mol Sci 2022; 23 (24) 15827
- 63 Masucci MT, Minopoli M, Carriero MV. Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol 2019; 9: 1146
- 64 Mi X, Song Y, Deng C. et al. Stimulation of liver fibrosis by N2 neutrophils in Wilson's disease. Cell Mol Gastroenterol Hepatol 2023; 16 (05) 657-684
- 65 MacParland SA, Liu JC, Ma XZ. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun 2018; 9 (01) 4383
- 66 Genshaft AS, Subudhi S, Keo A. et al. Single-cell RNA sequencing of liver fine-needle aspirates captures immune diversity in the blood and liver in chronic hepatitis B patients. Hepatology 2023; 78 (05) 1525-1541
- 67 Guan Y, Peiffer B, Feng D. et al. IL-8+ neutrophils drive inexorable inflammation in severe alcohol-associated hepatitis. J Clin Invest 2024; 134 (09) e178616
- 68 Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70 (01) 151-171
- 69 Magdaleno F, Blajszczak CC, Nieto N. Key events participating in the pathogenesis of alcoholic liver disease. Biomolecules 2017; 7 (01) 9
- 70 Rehm J, Taylor B, Mohapatra S. et al. Alcohol as a risk factor for liver cirrhosis: a systematic review and meta-analysis. Drug Alcohol Rev 2010; 29 (04) 437-445
- 71 Mackowiak B, Fu Y, Maccioni L, Gao B. Alcohol-associated liver disease. J Clin Invest 2024; 134 (03) e176345
- 72 Zhou Z, Zhong W. Targeting the gut barrier for the treatment of alcoholic liver disease. Liver Res 2017; 1 (04) 197-207
- 73 Staun-Olsen P, Bjørneboe M, Prytz H, Thomsen AC, Orskov F. Escherichia coli antibodies in alcoholic liver disease. Correlation to alcohol consumption, alcoholic hepatitis, and serum IgA. Scand J Gastroenterol 1983; 18 (07) 889-896
- 74 Keshavarzian A, Holmes EW, Patel M, Iber F, Fields JZ, Pethkar S. Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am J Gastroenterol 1999; 94 (01) 200-207
- 75 Fujimoto M, Uemura M, Nakatani Y. et al. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis: relation to severity of liver disturbance. Alcohol Clin Exp Res 2000; 24 (04) 48S-54S
- 76 Tang Y, Banan A, Forsyth CB. et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res 2008; 32 (02) 355-364
- 77 Bala S, Marcos M, Gattu A, Catalano D, Szabo G. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS One 2014; 9 (05) e96864
- 78 Giménez-Gómez P, Pérez-Hernández M, O'Shea E. et al. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice. FASEB J 2019; 33 (11) 12900-12914
- 79 Vaishnava S, Yamamoto M, Severson KM. et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334 (6053) 255-258
- 80 Mukherjee S, Zheng H, Derebe MG. et al. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 2014; 505 (7481) 103-107
- 81 Wang L, Fouts DE, Stärkel P. et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 2016; 19 (02) 227-239
- 82 Gao B, Ahmad MF, Nagy LE, Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 2019; 70 (02) 249-259
- 83 Wu X, Fan X, Miyata T. et al. Recent advances in understanding of pathogenesis of alcohol-associated liver disease. Annu Rev Pathol 2023; 18: 411-438
- 84 Cho Y, Bukong TN, Tornai D. et al. Neutrophil extracellular traps contribute to liver damage and increase defective low-density neutrophils in alcohol-associated hepatitis. J Hepatol 2023; 78 (01) 28-44
- 85 Khan RS, Lalor PF, Thursz M, Newsome PN. The role of neutrophils in alcohol-related hepatitis. J Hepatol 2023; 79 (04) 1037-1048
- 86 Xu MJ, Zhou Z, Parker R, Gao B. Targeting inflammation for the treatment of alcoholic liver disease. Pharmacol Ther 2017; 180: 77-89
- 87 You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 2002; 277 (32) 29342-29347
- 88 Ji C, Chan C, Kaplowitz N. Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. J Hepatol 2006; 45 (05) 717-724
- 89 Yin HQ, Kim M, Kim JH. et al. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice. Toxicol Appl Pharmacol 2007; 223 (03) 225-233
- 90 Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol 1987; 4 (01) 8-14
- 91 You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 2004; 127 (06) 1798-1808
- 92 Endo M, Masaki T, Seike M, Yoshimatsu H. TNF-alpha induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp Biol Med (Maywood) 2007; 232 (05) 614-621
- 93 You M, Liang X, Ajmo JM, Ness GC. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol 2008; 294 (04) G892-G898
- 94 Hoek JB, Cahill A, Pastorino JG. Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 2002; 122 (07) 2049-2063
- 95 Reboucas G, Isselbacher KJ. Studies on the pathogenesis of the ethanol-induced fatty liver. I. Synthesis and oxidation of fatty acids by the liver. J Clin Invest 1961; 40 (8, Pt 1-2): 1355-1362
- 96 Lu Y, George J. Interaction between fatty acid oxidation and ethanol metabolism in liver. Am J Physiol Gastrointest Liver Physiol 2024; 326 (05) G483-G494
- 97 Beigneux AP, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. The acute phase response is associated with retinoid X receptor repression in rodent liver. J Biol Chem 2000; 275 (21) 16390-16399
- 98 Kim MS, Sweeney TR, Shigenaga JK. et al. Tumor necrosis factor and interleukin 1 decrease RXRalpha, PPARalpha, PPARgamma, LXRalpha, and the coactivators SRC-1, PGC-1alpha, and PGC-1beta in liver cells. Metabolism 2007; 56 (02) 267-279
- 99 Sugimoto T, Yamashita S, Ishigami M. et al. Decreased microsomal triglyceride transfer protein activity contributes to initiation of alcoholic liver steatosis in rats. J Hepatol 2002; 36 (02) 157-162
- 100 Améen C, Edvardsson U, Ljungberg A. et al. Activation of peroxisome proliferator-activated receptor alpha increases the expression and activity of microsomal triglyceride transfer protein in the liver. J Biol Chem 2005; 280 (02) 1224-1229
- 101 Li P, Chen X, Dong M. et al. Gut inflammation exacerbates high-fat diet induced steatosis by suppressing VLDL-TG secretion through HNF4α pathway. Free Radic Biol Med 2021; 172: 459-469
- 102 Mookerjee RP, Stadlbauer V, Lidder S. et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology 2007; 46 (03) 831-840
- 103 Das S, Maras JS, Hussain MS. et al. Hyperoxidized albumin modulates neutrophils to induce oxidative stress and inflammation in severe alcoholic hepatitis. Hepatology 2017; 65 (02) 631-646
- 104 Robbins RA, Zetterman RK, Kendall TJ, Gossman GL, Monsour HP, Rennard SI. Elevation of chemotactic factor inactivator in alcoholic liver disease. Hepatology 1987; 7 (05) 872-877
- 105 Hill DB, Marsano LS, McClain CJ. Increased plasma interleukin-8 concentrations in alcoholic hepatitis. Hepatology 1993; 18 (03) 576-580
- 106 Lemmers A, Moreno C, Gustot T. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 2009; 49 (02) 646-657
- 107 Shen H, French BA, Liu H, Tillman BC, French SW. Increased activity of the complement system in the liver of patients with alcoholic hepatitis. Exp Mol Pathol 2014; 97 (03) 338-344
- 108 Gluud C, Jans H. Circulating immune complexes and complement concentrations in patients with alcoholic liver disease. J Clin Pathol 1982; 35 (04) 380-384
- 109 Korneev KV, Atretkhany KN, Drutskaya MS, Grivennikov SI, Kuprash DV, Nedospasov SA. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine 2017; 89: 127-135
- 110 Matsushima K, Yang D, Oppenheim JJ. Interleukin-8: an evolving chemokine. Cytokine 2022; 153: 155828
- 111 McClain C, Barve S, Joshi-Barve S. et al. Dysregulated cytokine metabolism, altered hepatic methionine metabolism and proteasome dysfunction in alcoholic liver disease. Alcohol Clin Exp Res 2005; 29 (11) 180S-188S
- 112 Swiatkowska-Stodulska R, Bakowska A, Drobińska-Jurowiecka A. Interleukin-8 in the blood serum of patients with alcoholic liver disease. Med Sci Monit 2006; 12 (05) CR215-CR220
- 113 Hillmer AT, Nadim H, Devine L, Jatlow P, O'Malley SS. Acute alcohol consumption alters the peripheral cytokines IL-8 and TNF-α. Alcohol 2020; 85: 95-99
- 114 Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 2017; 7 (06) 1543-1588
- 115 Wang Z, Li B, Jiang H. et al. IL-8 exacerbates alcohol-induced fatty liver disease via the Akt/HIF-1α pathway in human IL-8-expressing mice. Cytokine 2021; 138: 155402
- 116 Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity 2004; 21 (04) 467-476
- 117 Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007; 25: 821-852
- 118 Chu S, Sun R, Gu X. et al. Inhibition of sphingosine-1-phosphate-induced Th17 cells ameliorates alcohol-associated steatohepatitis in mice. Hepatology 2021; 73 (03) 952-967
- 119 Sheron N, Bird G, Koskinas J. et al. Circulating and tissue levels of the neutrophil chemotaxin interleukin-8 are elevated in severe acute alcoholic hepatitis, and tissue levels correlate with neutrophil infiltration. Hepatology 1993; 18 (01) 41-46
- 120 Colmenero J, Bataller R, Sancho-Bru P. et al. Hepatic expression of candidate genes in patients with alcoholic hepatitis: correlation with disease severity. Gastroenterology 2007; 132 (02) 687-697
- 121 Xu J, Ma HY, Liu X. et al. Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice. JCI Insight 2020; 5 (03) e131277
- 122 El-Behi M, Ciric B, Dai H. et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 2011; 12 (06) 568-575
- 123 Heredia JE, Sorenson C, Flanagan S. et al. IL-23 signaling is not an important driver of liver inflammation and fibrosis in murine non-alcoholic steatohepatitis models. PLoS One 2022; 17 (09) e0274582
- 124 Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology 2015; 148 (01) 30-36
- 125 Yan AW, Fouts DE, Brandl J. et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011; 53 (01) 96-105
- 126 Leclercq S, Matamoros S, Cani PD. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci U S A 2014; 111 (42) E4485-E4493
- 127 Wang Y, Kirpich I, Liu Y. et al. Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. Am J Pathol 2011; 179 (06) 2866-2875
- 128 Llopis M, Cassard AM, Wrzosek L. et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016; 65 (05) 830-839
- 129 Ferrere G, Wrzosek L, Cailleux F. et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol 2017; 66 (04) 806-815
- 130 Lowe PP, Gyongyosi B, Satishchandran A. et al. Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression. J Neuroinflammation 2018; 15 (01) 298
- 131 Zhu Y, Wang X, Zhu L. et al. Lactobacillus rhamnosus GG combined with inosine ameliorates alcohol-induced liver injury through regulation of intestinal barrier and Treg/Th1 cells. Toxicol Appl Pharmacol 2022; 439: 115923
- 132 Jiang M, Li F, Liu Y. et al. Probiotic-derived nanoparticles inhibit ALD through intestinal miR194 suppression and subsequent FXR activation. Hepatology 2023; 77 (04) 1164-1180
- 133 Mandrekar P, Szabo G. Signalling pathways in alcohol-induced liver inflammation. J Hepatol 2009; 50 (06) 1258-1266
- 134 Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141 (05) 1572-1585
- 135 Thursz M, Kamath PS, Mathurin P, Szabo G, Shah VH. Alcohol-related liver disease: areas of consensus, unmet needs and opportunities for further study. J Hepatol 2019; 70 (03) 521-530
- 136 Avila MA, Dufour JF, Gerbes AL. et al. Recent advances in alcohol-related liver disease (ALD): summary of a Gut round table meeting. Gut 2020; 69 (04) 764-780
- 137 Uesugi T, Froh M, Arteel GE. et al. Role of lipopolysaccharide-binding protein in early alcohol-induced liver injury in mice. J Immunol 2002; 168 (06) 2963-2969
- 138 Hritz I, Mandrekar P, Velayudham A. et al. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 2008; 48 (04) 1224-1231
- 139 Bajaj JS, Heuman DM, Hylemon PB. et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 2014; 60 (05) 940-947
- 140 Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 2003; 85 (02) 85-95
- 141 Roh YS, Zhang B, Loomba R, Seki E. TLR2 and TLR9 contribute to alcohol-mediated liver injury through induction of CXCL1 and neutrophil infiltration. Am J Physiol Gastrointest Liver Physiol 2015; 309 (01) G30-G41
- 142 Kusumanchi P, Liang T, Zhang T. et al. Stress-responsive gene FK506-binding protein 51 mediates alcohol-induced liver injury through the hippo pathway and chemokine (C-X-C motif) ligand 1 signaling. Hepatology 2021; 74 (03) 1234-1250
- 143 Gustot T, Lemmers A, Moreno C. et al. Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 2006; 43 (05) 989-1000
- 144 Seo B, Jeon K, Moon S. et al. Roseburia sppabundance associates with alcohol consumption in humans and its administration ameliorates alcoholic fatty liver in mice. Cell Host Microbe 2020; 27 (01) 25-40.e6
- 145 Maccioni L, Gao B, Leclercq S. et al. Intestinal permeability, microbial translocation, changes in duodenal and fecal microbiota, and their associations with alcoholic liver disease progression in humans. Gut Microbes 2020; 12 (01) 1782157
- 146 Wieser V, Tymoszuk P, Adolph TE. et al. Lipocalin 2 drives neutrophilic inflammation in alcoholic liver disease. J Hepatol 2016; 64 (04) 872-880
- 147 Wang M, Shen G, Xu L. et al. IL-1 receptor like 1 protects against alcoholic liver injury by limiting NF-κB activation in hepatic macrophages. J Hepatol 2017; 68 (01) 109-117
- 148 Eguchi A, Yan R, Pan SQ. et al. Comprehensive characterization of hepatocyte-derived extracellular vesicles identifies direct miRNA-based regulation of hepatic stellate cells and DAMP-based hepatic macrophage IL-1β and IL-17 upregulation in alcoholic hepatitis mice. J Mol Med (Berl) 2020; 98 (07) 1021-1034
- 149 Cho Y, Szabo G. Two faces of neutrophils in liver disease development and progression. Hepatology 2021; 74 (01) 503-512
- 150 Tang S, Zhang J, Zhang L. et al. Knockdown of CXCL1 improves ACLF by reducing neutrophil recruitment to attenuate ROS production and hepatocyte apoptosis. Hepatol Commun 2023; 7 (10) e0257
- 151 Wieser V, Adolph TE, Enrich B. et al. Reversal of murine alcoholic steatohepatitis by pepducin-based functional blockade of interleukin-8 receptors. Gut 2017; 66 (05) 930-938
- 152 Cai Y, Jogasuria A, Yin H. et al. The detrimental role played by lipocalin-2 in alcoholic fatty liver in mice. Am J Pathol 2016; 186 (09) 2417-2428
- 153 Artru F, Bou Saleh M, Maggiotto F. et al. IL-33/ST2 pathway regulates neutrophil migration and predicts outcome in patients with severe alcoholic hepatitis. J Hepatol 2020; 72 (06) 1052-1061
- 154 Taïeb J, Mathurin P, Elbim C. et al. Blood neutrophil functions and cytokine release in severe alcoholic hepatitis: effect of corticosteroids. J Hepatol 2000; 32 (04) 579-586
- 155 Casini A, Ceni E, Salzano R. et al. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology 1997; 25 (02) 361-367
- 156 Tranah TH, Vijay GKM, Ryan JM, Abeles RD, Middleton PK, Shawcross DL. Dysfunctional neutrophil effector organelle mobilization and microbicidal protein release in alcohol-related cirrhosis. Am J Physiol Gastrointest Liver Physiol 2017; 313 (03) G203-G211
- 157 Li N, Liu H, Xue Y. et al. Targetable Brg1-CXCL14 axis contributes to alcoholic liver injury by driving neutrophil trafficking. EMBO Mol Med 2023; 15 (03) e16592
- 158 Freitas M, Costa VM, Ribeiro D. et al. Acetaminophen prevents oxidative burst and delays apoptosis in human neutrophils. Toxicol Lett 2013; 219 (02) 170-177
- 159 Calvente CJ, Tameda M, Johnson CD. et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J Clin Invest 2019; 129 (10) 4091-4109
- 160 Taïeb J, Delarche C, Paradis V. et al. Polymorphonuclear neutrophils are a source of hepatocyte growth factor in patients with severe alcoholic hepatitis. J Hepatol 2002; 36 (03) 342-348
- 161 Ren R, He Y, Ding D. et al. Aging exaggerates acute-on-chronic alcohol-induced liver injury in mice and humans by inhibiting neutrophilic sirtuin 1-C/EBPα-miRNA-223 axis. Hepatology 2022; 75 (03) 646-660
- 162 Ma J, Guillot A, Yang Z. et al. Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure. J Clin Invest 2022; 132 (14) e157780
- 163 Kong X, Feng D, Mathews S, Gao B. Hepatoprotective and anti-fibrotic functions of interleukin-22: therapeutic potential for the treatment of alcoholic liver disease. J Gastroenterol Hepatol 2013; 28 (0 1, Suppl 1): 56-60
- 164 Arab JP, Sehrawat TS, Simonetto DA. et al. An open-label, dose-escalation study to assess the safety and efficacy of IL-22 agonist F-652 in patients with alcohol-associated hepatitis. Hepatology 2020; 72 (02) 441-453
- 165 Seth P, Dubey S. IL-22 as a target for therapeutic intervention: current knowledge on its role in various diseases. Cytokine 2023; 169: 156293
- 166 Spahr L, Lambert JF, Rubbia-Brandt L. et al. Granulocyte-colony stimulating factor induces proliferation of hepatic progenitors in alcoholic steatohepatitis: a randomized trial. Hepatology 2008; 48 (01) 221-229
- 167 Singh V, Sharma AK, Narasimhan RL, Bhalla A, Sharma N, Sharma R. Granulocyte colony-stimulating factor in severe alcoholic hepatitis: a randomized pilot study. Am J Gastroenterol 2014; 109 (09) 1417-1423
- 168 Morgan TR. Is granulocyte colony stimulating factor a new treatment for alcoholic hepatitis?. Clin Gastroenterol Hepatol 2018; 16 (10) 1564-1565
- 169 Martin KR, Wong HL, Witko-Sarsat V, Wicks IP. G-CSF - a double edge sword in neutrophil mediated immunity. Semin Immunol 2021; 54: 101516
- 170 Rolas L, Makhezer N, Hadjoudj S. et al. Inhibition of mammalian target of rapamycin aggravates the respiratory burst defect of neutrophils from decompensated patients with cirrhosis. Hepatology 2013; 57 (03) 1163-1171
- 171 Karakike E, Moreno C, Gustot T. Infections in severe alcoholic hepatitis. Ann Gastroenterol 2017; 30 (02) 152-160
- 172 Cho Y, Joshi R, Lowe P. et al. Granulocyte colony-stimulating factor attenuates liver damage by M2 macrophage polarization and hepatocyte proliferation in alcoholic hepatitis in mice. Hepatol Commun 2022; 6 (09) 2322-2339
- 173 Bruns T, Zimmermann HW, Stallmach A. Risk factors and outcome of bacterial infections in cirrhosis. World J Gastroenterol 2014; 20 (10) 2542-2554
- 174 Shasthry SM, Sharma MK, Shasthry V, Pande A, Sarin SK. Efficacy of granulocyte colony-stimulating factor in the management of steroid-nonresponsive severe alcoholic hepatitis: a double-blind randomized controlled trial. Hepatology 2019; 70 (03) 802-811
- 175 Shi X, DeLucia AL, Bao J, Zhang P. Alcohol abuse and disorder of granulopoiesis. Pharmacol Ther 2019; 198: 206-219
- 176 Johnnidis JB, Harris MH, Wheeler RT. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451 (7182) 1125-1129
- 177 Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 2012; 303 (01) G32-G41
- 178 Zhao H, Zhao C, Dong Y. et al. Inhibition of miR122a by Lactobacillus rhamnosus GG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease. Toxicol Lett 2015; 234 (03) 194-200
- 179 Forsyth CB, Farhadi A, Jakate SM, Tang Y, Shaikh M, Keshavarzian A. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 2009; 43 (02) 163-172
- 180 Gu Z, Li F, Liu Y. et al. Exosome-like nanoparticles from Lactobacillus rhamnosus GG protect against alcohol-associated liver disease through intestinal aryl hydrocarbon receptor in mice. Hepatol Commun 2021; 5 (05) 846-864
- 181 Vong L, Lorentz RJ, Assa A, Glogauer M, Sherman PM. Probiotic Lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps. J Immunol 2014; 192 (04) 1870-1877
- 182 Sagiv JY, Michaeli J, Assi S. et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 2015; 10 (04) 562-573
- 183 Brunt EM, Tiniakos DG. Histopathology of nonalcoholic fatty liver disease. World J Gastroenterol 2010; 16 (42) 5286-5296
- 184 Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 2010; 51 (05) 1820-1832
- 185 Chen Y, Tian Z. Roles of hepatic innate and innate-like lymphocytes in nonalcoholic steatohepatitis. Front Immunol 2020; 11: 1500
- 186 Peng C, Stewart AG, Woodman OL, Ritchie RH, Qin CX. Non-alcoholic steatohepatitis: a review of its mechanism, models and medical treatments. Front Pharmacol 2020; 11: 603926
- 187 Le MH, Yeo YH, Li X. et al. 2019 Global NAFLD prevalence: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2022; 20 (12) 2809-2817.e28
- 188 Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 2013; 10 (06) 330-344
- 189 Younossi Z, Anstee QM, Marietti M. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15 (01) 11-20
- 190 Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016; 65 (08) 1038-1048
- 191 Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115 (05) 1343-1351
- 192 Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24 (07) 908-922
- 193 Fromenty B, Robin MA, Igoudjil A, Mansouri A, Pessayre D. The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab 2004; 30 (02) 121-138
- 194 Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 2008; 134 (02) 424-431
- 195 Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008; 118 (03) 829-838
- 196 Pagadala M, Kasumov T, McCullough AJ, Zein NN, Kirwan JP. Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol Metab 2012; 23 (08) 365-371
- 197 Norris GH, Blesso CN. Dietary sphingolipids: potential for management of dyslipidemia and nonalcoholic fatty liver disease. Nutr Rev 2017; 75 (04) 274-285
- 198 Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 2006; 291 (02) E275-E281
- 199 Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 2006; 281 (17) 12093-12101
- 200 Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 2008; 47 (05) 1495-1503
- 201 Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 2018; 75 (18) 3313-3327
- 202 Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver?. Cell Death Dis 2020; 11 (09) 802
- 203 Yoon H, Shaw JL, Haigis MC, Greka A. Lipid metabolism in sickness and in health: emerging regulators of lipotoxicity. Mol Cell 2021; 81 (18) 3708-3730
- 204 Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwälder M, Tacke F. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 2022; 77 (04) 1136-1160
- 205 Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 2001; 48 (02) 206-211
- 206 Miele L, Valenza V, La Torre G. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009; 49 (06) 1877-1887
- 207 Forlano R, Martinez-Gili L, Takis P. et al. Disruption of gut barrier integrity and host-microbiome interactions underlie MASLD severity in patients with type-2 diabetes mellitus. Gut Microbes 2024; 16 (01) 2304157
- 208 Zhu L, Baker SS, Gill C. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013; 57 (02) 601-609
- 209 Jiang W, Wu N, Wang X. et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 2015; 5: 8096
- 210 Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci 2016; 61 (05) 1294-1303
- 211 Tilg H, Adolph TE, Dudek M, Knolle P. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat Metab 2021; 3 (12) 1596-1607
- 212 Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS. Kupffer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem 2012; 287 (48) 40161-40172
- 213 Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology 2014; 147 (03) 577-594.e1
- 214 Karlmark KR, Weiskirchen R, Zimmermann HW. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 2009; 50 (01) 261-274
- 215 Ramachandran P, Pellicoro A, Vernon MA. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 2012; 109 (46) E3186-E3195
- 216 Kazankov K, Jørgensen SMD, Thomsen KL. et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2019; 16 (03) 145-159
- 217 Rensen SS, Slaats Y, Nijhuis J. et al. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am J Pathol 2009; 175 (04) 1473-1482
- 218 Alkhouri N, Morris-Stiff G, Campbell C. et al. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int 2012; 32 (02) 297-302
- 219 Gadd VL, Skoien R, Powell EE. et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 2014; 59 (04) 1393-1405
- 220 Zang S, Wang L, Ma X. et al. Neutrophils play a crucial role in the early stage of nonalcoholic steatohepatitis via neutrophil elastase in mice. Cell Biochem Biophys 2015; 73 (02) 479-487
- 221 Khoury T, Mari A, Nseir W, Kadah A, Sbeit W, Mahamid M. Neutrophil-to-lymphocyte ratio is independently associated with inflammatory activity and fibrosis grade in nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2019; 31 (09) 1110-1115
- 222 Zhao X, Yang L, Chang N. et al. Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling. Cell Death Dis 2020; 11 (05) 379
- 223 Lv T, Xiong X, Yan W, Liu M, Xu H, He Q. Mitochondrial general control of amino acid synthesis 5 like 1 promotes nonalcoholic steatohepatitis development through ferroptosis-induced formation of neutrophil extracellular traps. Clin Transl Med 2023; 13 (07) e1325
- 224 Bijnen M, Josefs T, Cuijpers I. et al. Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice. Gut 2018; 67 (07) 1317-1327
- 225 González-Terán B, Matesanz N, Nikolic I. et al. p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO J 2016; 35 (05) 536-552
- 226 Talukdar S, Oh DY, Bandyopadhyay G. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 2012; 18 (09) 1407-1412
- 227 Rensen SS, Bieghs V, Xanthoulea S. et al. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS One 2012; 7 (12) e52411
- 228 Chen J, Liang B, Bian D. et al. Knockout of neutrophil elastase protects against western diet induced nonalcoholic steatohepatitis in mice by regulating hepatic ceramides metabolism. Biochem Biophys Res Commun 2019; 518 (04) 691-697
- 229 Woods AA, Davies MJ. Fragmentation of extracellular matrix by hypochlorous acid. Biochem J 2003; 376 (Pt 1): 219-227
- 230 Lau D, Mollnau H, Eiserich JP. et al. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc Natl Acad Sci U S A 2005; 102 (02) 431-436
- 231 Auguet T, Terra X, Quintero Y. et al. Liver lipocalin 2 expression in severely obese women with non alcoholic fatty liver disease. Exp Clin Endocrinol Diabetes 2013; 121 (02) 119-124
- 232 Abella V, Scotece M, Conde J. et al. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers 2015; 20 (08) 565-571
- 233 Ye D, Yang K, Zang S. et al. Lipocalin-2 mediates non-alcoholic steatohepatitis by promoting neutrophil-macrophage crosstalk via the induction of CXCR2. J Hepatol 2016; 65 (05) 988-997
- 234 Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H. Lipocalin-2: a master mediator of intestinal and metabolic inflammation. Trends Endocrinol Metab 2017; 28 (05) 388-397
- 235 Bhusal A, Rahman MH, Lee WH, Bae YC, Lee IK, Suk K. Paradoxical role of lipocalin-2 in metabolic disorders and neurological complications. Biochem Pharmacol 2019; 169: 113626
- 236 Arelaki S, Koletsa T, Sinakos E. et al. Neutrophil extracellular traps enriched with IL-1β and IL-17A participate in the hepatic inflammatory process of patients with non-alcoholic steatohepatitis. Virchows Arch 2022; 481 (03) 455-465
- 237 Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest 2017; 127 (01) 55-64
- 238 Zhou Z, Xu MJ, Cai Y. et al. Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis. Cell Mol Gastroenterol Hepatol 2018; 5 (03) 399-413
- 239 Xia Y, Wang Y, Xiong Q. et al. Neutrophil extracellular traps promote MASH fibrosis by metabolic reprogramming of HSC. Hepatology 2024; ; (online ahead of print) doi:
- 240 Maher JJ, Lozier JS, Scott MK. Rat hepatic stellate cells produce cytokine-induced neutrophil chemoattractant in culture and in vivo. Am J Physiol 1998; 275 (04) G847-G853
- 241 Bigorgne AE, John B, Ebrahimkhani MR, Shimizu-Albergine M, Campbell JS, Crispe IN. TLR4-dependent secretion by hepatic stellate cells of the neutrophil-chemoattractant CXCL1 mediates liver response to gut microbiota. PLoS One 2016; 11 (03) e0151063
- 242 Ortega-Gómez A, Perretti M, Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med 2013; 5 (05) 661-674
- 243 Eken C, Sadallah S, Martin PJ, Treves S, Schifferli JA. Ectosomes of polymorphonuclear neutrophils activate multiple signaling pathways in macrophages. Immunobiology 2013; 218 (03) 382-392
- 244 Dalli J, Serhan CN. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 2012; 120 (15) e60-e72
- 245 Marwick JA, Mills R, Kay O. et al. Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation. Cell Death Dis 2018; 9 (06) 665
- 246 Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature 1997; 390 (6658) 350-351
- 247 Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998; 101 (04) 890-898
- 248 Wang J, Ortiz C, Fontenot L. et al. Elafin inhibits obesity, hyperglycemia, and liver steatosis in high-fat diet-treated male mice. Sci Rep 2020; 10 (01) 12785
- 249 Koop AC, Thiele ND, Steins D. et al. Therapeutic targeting of myeloperoxidase attenuates NASH in mice. Hepatol Commun 2020; 4 (10) 1441-1458
- 250 Tidén AK, Sjögren T, Svensson M. et al. 2-thioxanthines are mechanism-based inactivators of myeloperoxidase that block oxidative stress during inflammation. J Biol Chem 2011; 286 (43) 37578-37589
- 251 Du J, Zhang J, Chen X. et al. Neutrophil extracellular traps induced by pro-inflammatory cytokines enhance procoagulant activity in NASH patients. Clin Res Hepatol Gastroenterol 2022; 46 (01) 101697
- 252 Leslie J, Mackey JBG, Jamieson T. et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 2022; 71 (10) 2093-2106
- 253 Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol 2012; 189 (08) 4175-4181
- 254 Simondon KB, Simondon F, Cornu A, Delpeuch F. The utility of infancy weight curves for the prediction of linear growth retardation in preschool children. Acta Paediatr Scand 1991; 80 (01) 1-6
- 255 He Y, Rodrigues RM, Wang X. et al. Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223-enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis. J Clin Invest 2021; 131 (03) e141513
- 256 Hou X, Yin S, Ren R. et al. Myeloid-cell-specific IL-6 signaling promotes microRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis. Hepatology 2021; 74 (01) 116-132
- 257 Jimenez Calvente C, Del Pilar H, Tameda M, Johnson CD, Feldstein AE. MicroRNA 223 3p Negatively Regulates the NLRP3 Inflammasome in Acute and Chronic Liver Injury. Mol Ther 2020; 28 (02) 653-663
- 258 Niu Q, Wang T, Wang Z. et al. Adipose-derived mesenchymal stem cell-secreted extracellular vesicles alleviate non-alcoholic fatty liver disease via delivering miR-223-3p. Adipocyte 2022; 11 (01) 572-587
- 259 Yuan S, Wu Q, Wang Z. et al. miR-223: an immune regulator in infectious disorders. Front Immunol 2021; 12: 781815
- 260 Moriya A, Iwasaki Y, Ohguchi S. et al. Roles of alcohol consumption in fatty liver: a longitudinal study. J Hepatol 2015; 62 (04) 921-927
- 261 Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun Wong V. et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology 2018; 155 (02) 443-457.e17
- 262 Chang Y, Cho YK, Kim Y. et al. Nonheavy drinking and worsening of noninvasive fibrosis markers in nonalcoholic fatty liver disease: a cohort study. Hepatology 2019; 69 (01) 64-75
- 263 Parker R, Kim SJ, Im GY. et al. Obesity in acute alcoholic hepatitis increases morbidity and mortality. EBioMedicine 2019; 45: 511-518
- 264 Loomba R, Wong VW. Implications of the new nomenclature of steatotic liver disease and definition of metabolic dysfunction-associated steatotic liver disease. Aliment Pharmacol Ther 2024; 59 (02) 150-156
- 265 Kim GA, Moon JH, Kim W. Critical appraisal of metabolic dysfunction-associated steatotic liver disease: Implication of Janus-faced modernity. Clin Mol Hepatol 2023; 29 (04) 831-843
- 266 Gao B, Xu MJ, Bertola A, Wang H, Zhou Z, Liangpunsakul S. Animal models of alcoholic liver disease: pathogenesis and clinical relevance. Gene Expr 2017; 17 (03) 173-186