CC BY 4.0 · Pharmaceutical Fronts 2024; 06(03): e195-e220
DOI: 10.1055/s-0044-1789577
Review Article

Recent Development of CDK2 Inhibitors as Anticancer Drugs: An Update (2015–2023)

Yumei Jin#
1   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, People's Republic of China
,
Hao Lu#
1   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, People's Republic of China
,
Hu Ge
2   Wecomput Technology Co., Ltd., Shanghai, People's Republic of China
,
Xuben Hou
1   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, People's Republic of China
,
Hao Fang
1   Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, People's Republic of China
› Author Affiliations
Funding This work was supported by the National Natural Science Foundation of China (Grant Nos. 82003590, 22377068, and 92053105), Shandong Provincial Youth Innovation Team Development Program (Grant No. 2023KJ026), and the Taishan Scholars Program of Shandong Province (Grant No. tstp20230606).

Abstract

Cyclin-dependent kinase 2 (CDK2) is a critical regulator of cell division and has emerged as a promising target for anticancer treatment. In this article, we summarize the structural features of CDK2 inhibitors and corresponding binding modes, in particular the noncompetitive binding modes that offer unique advantages for the development of highly selective inhibitors. In addition, we present an overview of the latest advancements in the development of CDK2 inhibitors and discuss the trend in the field. This review provides valuable insights into the structure–activity relationships of the reported CDK2 inhibitors, inspiring the development of potent and selective CDK2 inhibitors in the future.

# These authors contribute equally to this work.




Publication History

Received: 05 December 2023

Accepted: 01 August 2024

Article published online:
03 September 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Betzi S, Alam R, Martin M. et al. Discovery of a potential allosteric ligand binding site in CDK2. ACS Chem Biol 2011; 6 (05) 492-501
  • 2 Malumbres M. Cyclin-dependent kinases. Genome Biol 2014; 15 (06) 122
  • 3 Hardcastle IR, Golding BT, Griffin RJ. Designing inhibitors of cyclin-dependent kinases. Annu Rev Pharmacol Toxicol 2002; 42: 325-348
  • 4 Galbraith MD, Bender H, Espinosa JM. Therapeutic targeting of transcriptional cyclin-dependent kinases. Transcription 2019; 10 (02) 118-136
  • 5 Cao L, Chen F, Yang X, Xu W, Xie J, Yu L. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages. BMC Evol Biol 2014; 14: 10
  • 6 Ding L, Cao J, Lin W. et al. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci 2020; 21 (06) 1960
  • 7 Chou J, Quigley DA, Robinson TM, Feng FY, Ashworth A. Transcription-associated cyclin-dependent kinases as targets and biomarkers for cancer therapy. Cancer Discov 2020; 10 (03) 351-370
  • 8 Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V. How selective are pharmacological inhibitors of cell-cycle-regulating cyclin-dependent kinases?. J Med Chem 2018; 61 (20) 9105-9120
  • 9 Vijayaraghavan S, Moulder S, Keyomarsi K, Layman RM. Inhibiting CDK in cancer therapy: current evidence and future directions. Target Oncol 2018; 13 (01) 21-38
  • 10 Yin X, Yu J, Zhou Y. et al. Identification of CDK2 as a novel target in treatment of prostate cancer. Future Oncol 2018; 14 (08) 709-718
  • 11 First CDK 4/6 inhibitor heads to market. Cancer Discov 2015; 5 (04) 339-340
  • 12 Ribociclib approved for advanced breast cancer. Cancer Discov 2017; 7 (05) OF3
  • 13 Abemaciclib (Verzenio)–a third CDK 4/6 inhibitor for breast cancer. Med Lett Drugs Ther 2017; 59 (1533) 185-186
  • 14 Powell K, Prasad V. Concerning FDA approval of trilaciclib (Cosela) in extensive-stage small-cell lung cancer. Transl Oncol 2021; 14 (11) 101206
  • 15 Zhang H, Yan S, Zhan Y. et al. A mass balance study of [14C]SHR6390 (dalpiciclib), a selective and potent CDK4/6 inhibitor in humans. Front Pharmacol 2023; 14: 1116073
  • 16 Choo JR, Lee SC. CDK4-6 inhibitors in breast cancer: current status and future development. Expert Opin Drug Metab Toxicol 2018; 14 (11) 1123-1138
  • 17 Said MA, Abdelrahman MA, Abourehab MAS, Fares M, Eldehna WM. A patent review of anticancer CDK2 inhibitors (2017-present). Expert Opin Ther Pat 2022; 32 (08) 885-898
  • 18 Tadesse S, Anshabo AT, Portman N. et al. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov Today 2020; 25 (02) 406-413
  • 19 Talapati SR, Nataraj V, Pothuganti M. et al. Structure of cyclin-dependent kinase 2 (CDK2) in complex with the specific and potent inhibitor CVT-313. Acta Crystallogr F Struct Biol Commun 2020; 76 (Pt 8): 350-356
  • 20 Tadesse S, Caldon EC, Tilley W, Wang S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J Med Chem 2019; 62 (09) 4233-4251
  • 21 Tang J, Shewchuk LM, Sato H, Hasegawa M, Washio Y, Nishigaki N. Anilinopyrazole as selective CDK2 inhibitors: design, synthesis, biological evaluation, and X-ray crystallographic analysis. Bioorg Med Chem Lett 2003; 13 (18) 2985-2988
  • 22 De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH. Crystal structure of cyclin-dependent kinase 2. Nature 1993; 363 (6430) 595-602
  • 23 Gu Y, Rosenblatt J, Morgan DO. Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J 1992; 11 (11) 3995-4005
  • 24 Chohan TA, Qian H, Pan Y, Chen JZ. Cyclin-dependent kinase-2 as a target for cancer therapy: progress in the development of CDK2 inhibitors as anti-cancer agents. Curr Med Chem 2015; 22 (02) 237-263
  • 25 Zheng N, Xu Y. Studies on protein function of cyclin-dependent kinase 2 and its inhibitors [in Chinese]. Chinese Journal of Cell Biology 2021; 43 (03) 815-827
  • 26 Ma T, Van Tine BA, Wei Y. et al. Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev 2000; 14 (18) 2298-2313
  • 27 Okuda M. The role of nucleophosmin in centrosome duplication. Oncogene 2002; 21 (40) 6170-6174
  • 28 Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 2002; 3 (03) 339-350
  • 29 Saurus P, Kuusela S, Dumont V. et al. Cyclin-dependent kinase 2 protects podocytes from apoptosis. Sci Rep 2016; 6: 21664
  • 30 Zhang DQ, Li JS, Zhang YM, Gao F, Dai RZ. Astragaloside IV inhibits angiotensin II-stimulated proliferation of rat vascular smooth muscle cells via the regulation of CDK2 activity. Life Sci 2018; 200: 105-109
  • 31 Liu Q, Gao J, Zhao C. et al. To control or to be controlled? Dual roles of CDK2 in DNA damage and DNA damage response. DNA Repair (Amst) 2020; 85: 102702
  • 32 Ying M, Shao X, Jing H. et al. Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2. Blood 2018; 131 (24) 2698-2711
  • 33 Silva MC, Bodor DL, Stellfox ME. et al. Cdk activity couples epigenetic centromere inheritance to cell cycle progression. Dev Cell 2012; 22 (01) 52-63
  • 34 Hu S, Danilov AV, Godek K. et al. CDK2 inhibition causes anaphase catastrophe in lung cancer through the centrosomal protein CP110. Cancer Res 2015; 75 (10) 2029-2038
  • 35 Takada M, Zhang W, Suzuki A. et al. FBW7 loss promotes chromosomal instability and tumorigenesis via cyclin E1/CDK2-mediated phosphorylation of CENP-A. Cancer Res 2017; 77 (18) 4881-4893
  • 36 Chunder N, Wang L, Chen C, Hancock WW, Wells AD. Cyclin-dependent kinase 2 controls peripheral immune tolerance. J Immunol 2012; 189 (12) 5659-5666
  • 37 Lee S, Kim S, Chung H, Moon JH, Kang SJ, Park CG. Mesenchymal stem cell-derived exosomes suppress proliferation of T cells by inducing cell cycle arrest through p27kip1/Cdk2 signaling. Immunol Lett 2020; 225: 16-22
  • 38 Hydbring P, Larsson LG. CDK2: a key regulator of the senescence control function of Myc. Aging (Albany NY) 2010; 2 (04) 244-250
  • 39 Gavet O, Pines J. Progressive activation of CyclinB1-CDK1 coordinates entry to mitosis. Dev Cell 2010; 18 (04) 533-543
  • 40 Zalzali H, Nasr B, Harajly M. et al. CDK2 transcriptional repression is an essential effector in p53-dependent cellular senescence-implications for therapeutic intervention. Mol Cancer Res 2015; 13 (01) 29-40
  • 41 Tang Z, Li L, Tang Y. et al. CDK2 positively regulates aerobic glycolysis by suppressing SIRT5 in gastric cancer. Cancer Sci 2018; 109 (08) 2590-2598
  • 42 Choi JS, Shin S, Jin YH. et al. Cyclin-dependent protein kinase 2 activity is required for mitochondrial translocation of Bax and disruption of mitochondrial transmembrane potential during etoposide-induced apoptosis. Apoptosis 2007; 12 (07) 1229-1241
  • 43 Jin YH, Yoo KJ, Lee YH, Lee SK. Caspase 3-mediated cleavage of p21WAF1/CIP1 associated with the cyclin A-cyclin-dependent kinase 2 complex is a prerequisite for apoptosis in SK-HEP-1 cells. J Biol Chem 2000; 275 (39) 30256-30263
  • 44 Huang H, Regan KM, Lou Z, Chen J, Tindall DJ. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 2006; 314 (5797) 294-297
  • 45 Wang J, Yang T, Xu G. et al. Cyclin-dependent kinase 2 promotes tumor proliferation and induces radio resistance in glioblastoma. Transl Oncol 2016; 9 (06) 548-556
  • 46 Viegas DJ, Edwards TG, Bloom DC, Abreu PA. Virtual screening identified compounds that bind to cyclin dependent kinase 2 and prevent herpes simplex virus type 1 replication and reactivation in neurons. Antiviral Res 2019; 172: 104621
  • 47 Guo S, Lei X, Chang Y. et al. SARS-CoV-2 hijacks cellular kinase CDK2 to promote viral RNA synthesis. Signal Transduct Target Ther 2022; 7 (01) 400
  • 48 Qin J, Huang T, Wang Z. et al. Bud31-mediated alternative splicing is required for spermatogonial stem cell self-renewal and differentiation. Cell Death Differ 2023; 30 (01) 184-194
  • 49 Faber EB, Wang N, John K. et al. Screening through lead optimization of high affinity, allosteric cyclin-dependent kinase 2 (CDK2) inhibitors as male contraceptives that reduce sperm counts in mice. J Med Chem 2023; 66 (03) 1928-1940
  • 50 Singh P, Patel RK, Palmer N. et al. CDK2 kinase activity is a regulator of male germ cell fate. Development 2019; 146 (21) dev180273
  • 51 Lee SJ, Kim KH, Lee DJ. et al. MAST4 controls cell cycle in spermatogonial stem cells. Cell Prolif 2023; 56 (04) e13390
  • 52 Hazlitt RA, Teitz T, Bonga JD. et al. Development of second-generation CDK2 inhibitors for the prevention of cisplatin-induced hearing loss. J Med Chem 2018; 61 (17) 7700-7709
  • 53 Zhao Z, Wu H, Wang L. et al. Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery?. ACS Chem Biol 2014; 9 (06) 1230-1241
  • 54 Attwood MM, Fabbro D, Sokolov AV, Knapp S, Schiöth HB. Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov 2021; 20 (11) 839-861
  • 55 Pellerano M, Tcherniuk S, Perals C. et al. Targeting conformational activation of cdk2 kinase. Biotechnol J 2017; 12 (08) ) ( e-pub ahead of print). DOI: 10.1002/biot.201600531.
  • 56 Anscombe E, Meschini E, Mora-Vidal R. et al. Identification and characterization of an irreversible inhibitor of CDK2. Chem Biol 2015; 22 (09) 1159-1164
  • 57 Coxon CR, Anscombe E, Harnor SJ. et al. Cyclin-dependent kinase (CDK) inhibitors: structure-activity relationships and insights into the CDK-2 selectivity of 6-substituted 2-arylaminopurines. J Med Chem 2017; 60 (05) 1746-1767
  • 58 Köprülüoğlu C, Dejmek M, Šála M. et al. Optimization of norbornyl-based carbocyclic nucleoside analogs as cyclin-dependent kinase 2 inhibitors. J Mol Recognit 2020; 33 (08) e2842
  • 59 Park SJ, Kim E, Yoo M. et al. Synthesis and biological evaluation of N9-cis-cyclobutylpurine derivatives for use as cyclin-dependent kinase (CDK) inhibitors. Bioorg Med Chem Lett 2017; 27 (18) 4399-4404
  • 60 Yu Y, Ran D, Jiang J. et al. Discovery of novel 9H-purin derivatives as dual inhibitors of HDAC1 and CDK2. Bioorg Med Chem Lett 2019; 29 (16) 2136-2140
  • 61 Brooks EE, Gray NS, Joly A. et al. CVT-313, a specific and potent inhibitor of CDK2 that prevents neointimal proliferation. J Biol Chem 1997; 272 (46) 29207-29211
  • 62 Meijer L, Borgne A, Mulner O. et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997; 243 (1–2): 527-536
  • 63 Cocco E, Lopez S, Black J. et al. Dual CCNE1/PIK3CA targeting is synergistic in CCNE1-amplified/PIK3CA-mutated uterine serous carcinomas in vitro and in vivo . Br J Cancer 2016; 115 (03) 303-311
  • 64 Gray NS, Wodicka L, Thunnissen AM. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 1998; 281 (5376) 533-538
  • 65 Bettayeb K, Oumata N, Echalier A. et al. CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene 2008; 27 (44) 5797-5807
  • 66 Rigas AC, Robson CN, Curtin NJ. Therapeutic potential of CDK inhibitor NU2058 in androgen-independent prostate cancer. Oncogene 2007; 26 (55) 7611-7619
  • 67 Ghia P, Scarfò L, Perez S. et al. Efficacy and safety of dinaciclib vs ofatumumab in patients with relapsed/refractory chronic lymphocytic leukemia. Blood 2017; 129 (13) 1876-1878
  • 68 Paruch K, Dwyer MP, Alvarez C. et al. Discovery of dinaciclib (SCH 727965): a potent and selective inhibitor of cyclin-dependent kinases. ACS Med Chem Lett 2010; 1 (05) 204-208
  • 69 Parry D, Guzi T, Shanahan F. et al. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther 2010; 9 (08) 2344-2353
  • 70 Feldmann G, Mishra A, Bisht S. et al. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biol Ther 2011; 12 (07) 598-609
  • 71 Chen Z, Wang Z, Pang JC. et al. Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity. Sci Rep 2016; 6: 29090
  • 72 Lin SF, Lin JD, Hsueh C, Chou TC, Wong RJ. A cyclin-dependent kinase inhibitor, dinaciclib in preclinical treatment models of thyroid cancer. PLoS One 2017; 12 (02) e0172315
  • 73 Moharram SA, Shah K, Khanum F, Marhäll A, Gazi M, Kazi JU. Efficacy of the CDK inhibitor dinaciclib in vitro and in vivo in T-cell acute lymphoblastic leukemia. Cancer Lett 2017; 405: 73-78
  • 74 Hylsová M, Carbain B, Fanfrlík J. et al. Explicit treatment of active-site waters enhances quantum mechanical/implicit solvent scoring: inhibition of CDK2 by new pyrazolo[1,5-a]pyrimidines. Eur J Med Chem 2017; 126: 1118-1128
  • 75 Hassan GS, Abdel Rahman DE, Nissan YM, Abdelmajeed EA, Abdelghany TM. Novel pyrazolopyrimidines: synthesis, in vitro cytotoxic activity and mechanistic investigation. Eur J Med Chem 2017; 138: 565-576
  • 76 Cherukupalli S, Chandrasekaran B, Kryštof V. et al. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorg Chem 2018; 79: 46-59
  • 77 Cherukupalli S, Chandrasekaran B, Aleti RR. et al. Synthesis of 4, 6-disubstituted pyrazolo [3,4-d] pyrimidine analogues: cyclin-dependent kinase 2 (CDK2) inhibition, molecular docking and anticancer evaluation. J Mol Struct 2019; 1176: 538-551
  • 78 Jorda R, Havlíček L, Šturc A. et al. 3,5,7-Substituted pyrazolo[4,3- d]pyrimidine inhibitors of cyclin-dependent kinases and their evaluation in lymphoma models. J Med Chem 2019; 62 (09) 4606-4623
  • 79 Vymětalová L, Havlíček L, Šturc A. et al. 5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases. Eur J Med Chem 2016; 110: 291-301
  • 80 Vekariya MK, Vekariya RH, Brahmkshatriya PS, Shah NK. Pyrimidine-based pyrazoles as cyclin-dependent kinase 2 inhibitors: design, synthesis, and biological evaluation. Chem Biol Drug Des 2018; 92 (03) 1683-1691
  • 81 Cortese D, Chegaev K, Guglielmo S. et al. Synthesis and biological evaluation of n(2) -substituted 2,4-diamino-6-cyclohexylmethoxy-5-nitrosopyrimidines and related 5-Cyano-NNO-azoxy derivatives as cyclin-dependent kinase 2 (CDK2) inhibitors. ChemMedChem 2016; 11 (16) 1705-1708
  • 82 Wang Y, Chen Y, Cheng X. et al. Design, synthesis and biological evaluation of pyrimidine derivatives as novel CDK2 inhibitors that induce apoptosis and cell cycle arrest in breast cancer cells. Bioorg Med Chem 2018; 26 (12) 3491-3501
  • 83 Singh U, Chashoo G, Khan SU. et al. Design of novel 3-pyrimidinylazaindole CDK2/9 inhibitors with potent in vitro and in vivo antitumor efficacy in a triple-negative breast cancer model. J Med Chem 2017; 60 (23) 9470-9489
  • 84 Ajani H, Jansa J, Köprülüoğlu C. et al. Imidazo[1,2-c]pyrimidin-5(6H)-one as a novel core of cyclin-dependent kinase 2 inhibitors: Synthesis, activity measurement, docking, and quantum mechanical scoring. J Mol Recognit 2018; 31 (09) e2720
  • 85 Byth KF, Thomas A, Hughes G. et al. AZD5438, a potent oral inhibitor of cyclin-dependent kinases 1, 2, and 9, leads to pharmacodynamic changes and potent antitumor effects in human tumor xenografts. Mol Cancer Ther 2009; 8 (07) 1856-1866
  • 86 Diao PC, Lin WY, Jian XE, Li YH, You WW, Zhao PL. Discovery of novel pyrimidine-based benzothiazole derivatives as potent cyclin-dependent kinase 2 inhibitors with anticancer activity. Eur J Med Chem 2019; 179: 196-207
  • 87 Freeman-Cook KD, Hoffman RL, Behenna DC. et al. Discovery of PF-06873600, a CDK2/4/6 inhibitor for the treatment of cancer. J Med Chem 2021; 64 (13) 9056-9077
  • 88 Alexander LT, Möbitz H, Drueckes P. et al. Type II inhibitors targeting CDK2. ACS Chem Biol 2015; 10 (09) 2116-2125
  • 89 Brasca MG, Amboldi N, Ballinari D. et al. Identification of N,1,4,4-tetramethyl-8-[4-(4-methylpiperazin-1-yl)phenyl]amino-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin-dependent kinase inhibitor. J Med Chem 2009; 52 (16) 5152-5163
  • 90 William AD, Lee AC, Goh KC. et al. Discovery of kinase spectrum selective macrocycle (16E)-14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene (SB1317/TG02), a potent inhibitor of cyclin dependent kinases (CDKs), Janus kinase 2 (JAK2), and fms-like tyrosine kinase-3 (FLT3) for the treatment of cancer. J Med Chem 2012; 55 (01) 169-196
  • 91 Siemeister G, Lücking U, Wengner AM. et al. BAY 1000394, a novel cyclin-dependent kinase inhibitor, with potent antitumor activity in mono- and in combination treatment upon oral application. Mol Cancer Ther 2012; 11 (10) 2265-2273
  • 92 Pennati M, Campbell AJ, Curto M. et al. Potentiation of paclitaxel-induced apoptosis by the novel cyclin-dependent kinase inhibitor NU6140: a possible role for survivin down-regulation. Mol Cancer Ther 2005; 4 (09) 1328-1337
  • 93 Chu XJ, DePinto W, Bartkovitz D. et al. Discovery of [4-Amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6- methoxyphenyl)methanone (R547), a potent and selective cyclin-dependent kinase inhibitor with significant in vivo antitumor activity. J Med Chem 2006; 49 (22) 6549-6560
  • 94 Wang Y, Zhi Y, Jin Q. et al. Discovery of 4-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-kinase inhibitor with potentially high efficiency against acute myelocytic leukemia. J Med Chem 2018; 61 (04) 1499-1518
  • 95 Zhi Y, Wang Z, Yao C. et al. Design and synthesis of 4-(heterocyclic substituted amino)-1H-pyrazole-3-carboxamide derivatives and their potent activity against acute myeloid leukemia (AML). Int J Mol Sci 2019; 20 (22) 5739
  • 96 Cheng C, Yun F, Ullah S, Yuan Q. Discovery of novel cyclin-dependent kinase (CDK) and histone deacetylase (HDAC) dual inhibitors with potent in vitro and in vivo anticancer activity. Eur J Med Chem 2020; 189: 112073
  • 97 Oudah KH, Najm MAA, Samir N, Serya RAT, Abouzid KAM. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors. Bioorg Chem 2019; 92: 103239
  • 98 Opoku-Temeng C, Dayal N, Hernandez DE, Naganna N, Sintim HO. Tetrahydro-3H-pyrazolo[4,3-a]phenanthridine-based CDK inhibitor. Chem Commun (Camb) 2018; 54 (36) 4521-4524
  • 99 Pfizer. A study to learn about the study medicine (called PF-07220060 in combination with pf-07104091) in participants with breast cancer and solid tumors. ClinicalTrials.gov identifier: NCT05262400. Updated July 24, 2024 . Accessed December 5, 2023 at: https://www.clinicaltrials.gov/study/NCT05262400#eligibility
  • 100 Patel MR, Dejan Juric D, Henick BS. et al. VELA: A first-in-human phase 1/2 study of BLU-222, a potent, selective cyclin-dependent kinase (CDK) 2 inhibitor in patients with cyclin E1 gene (CCNE1)-amplified or CDK4/6 inhibitor-resistant advanced solid tumors [abstract]. Paper presented at: Proceedings of the 2022 San Antonio Breast Cancer Symposium; December 6–10, 2022; San Antonio, TX. Philadelphia, PA: AACR; Cancer Res 2023 ;83(5 suppl):Abstract nr OT3–23–01
  • 101 Alec GT, John EB, Catherine D. et al. INX-315, a potent and selective CDK2 inhibitor, demonstrates robust antitumor activity in CCNE1-amplified cancers [abstract]. Paper presented at: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); April 14–19, 2023; Orlando, FL. Philadelphia, PA: AACR; Cancer Res 2023 ;83(7_suppl):Abstract nr 5994
  • 102 Chand S, Hansbury M, Lo Y. et al. Development of a CDK2-selective small molecule inhibitor INCB123667 for the treatment of CCNE1hi breast cancers [abstract]. Paper presented at: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); April 14–19, 2023; Orlando, FL. Philadelphia, PA: AACR; Cancer Res 2023 ;83(7_suppl):Abstract nr 1143
  • 103 Pfizer. PF-07104091 as a single agent and in combination therapy. ClinicalTrials.gov identifier: NCT04553133. Updated May 16, 2024 . Accessed December 5, 2023 at: https://clinicaltrials.gov/study/NCT04553133
  • 104 Patel H, Periyasamy M, Sava GP. et al. ICEC0942, an orally bioavailable selective inhibitor of cdk7 for cancer treatment. Mol Cancer Ther 2018; 17 (06) 1156-1166
  • 105 Santo L, Vallet S, Hideshima T. et al. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3beta activation and RNA polymerase II inhibition. Oncogene 2010; 29 (16) 2325-2336
  • 106 Ferguson FM, Doctor ZM, Ficarro SB. et al. Discovery of covalent CDK14 inhibitors with Pan-TAIRE family specificity. Cell Chem Biol 2019; 26 (06) 804-817.e12
  • 107 McMillin DW, Delmore J, Negri J. et al. Molecular and cellular effects of multi-targeted cyclin-dependent kinase inhibition in myeloma: biological and clinical implications. Br J Haematol 2011; 152 (04) 420-432
  • 108 Misra RN, Xiao Hy, Rawlins DB. et al. 1H-Pyrazolo[3,4-b]pyridine inhibitors of cyclin-dependent kinases: highly potent 2,6-difluorophenacyl analogues. Bioorg Med Chem Lett 2003; 13 (14) 2405-2408
  • 109 Brasca MG, Albanese C, Alzani R. et al. Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing. Bioorg Med Chem 2010; 18 (05) 1844-1853
  • 110 Xu X, Yao Q. Scaffold hopping approach to a new series of pyridine derivatives as potent inhibitors of CDK2. Arch Pharm (Weinheim) 2016; 349 (03) 224-231
  • 111 Wu YZ, Ying HZ, Xu L. et al. Design, synthesis, and molecular docking study of 3H-imidazole[4,5-c]pyridine derivatives as CDK2 inhibitors. Arch Pharm (Weinheim) 2018; 351 (06) e1700381
  • 112 Bharate SB, Kumar V, Jain SK. et al. Discovery and preclinical development of IIIM-290, an orally active potent cyclin-dependent kinase inhibitor. J Med Chem 2018; 61 (04) 1664-1687
  • 113 Hu X, Zhao H, Wang Y, Liu Z, Feng B, Tang C. Synthesis and biological evaluation of novel 5,6-dihydropyrimido[4,5-f]quinazoline derivatives as potent CDK2 inhibitors. Bioorg Med Chem Lett 2018; 28 (20) 3385-3390
  • 114 Arba M, Ihsan S, Ramadhan OA, Tjahjono DH. In silico study of porphyrin-anthraquinone hybrids as CDK2 inhibitor. Comput Biol Chem 2017; 67: 9-14
  • 115 Abd El-Karim SS, Syam YM, El Kerdawy AM, Abdelghany TM. New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: synthesis, CDK2 inhibition, QSAR and molecular docking studies. Bioorg Chem 2019; 86: 80-96
  • 116 Baltus CB, Jorda R, Marot C. et al. Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors. Eur J Med Chem 2016; 108: 701-719
  • 117 Mahajan P, Chashoo G, Gupta M, Kumar A, Singh PP, Nargotra A. Fusion of structure and ligand-based methods for identification of novel CDK2 inhibitors. J Chem Inf Model 2017; 57 (08) 1957-1969
  • 118 Al-Otaibi FA, Bakhotmah DA. Synthesis and biological evaluation of new fluorine compounds bearing 4-amino-1,2,4-triazino [4,3-b]-1, 2, 4-triazin-8-one and the related derivatives as CDK2 inhibitors of tumor cell. Polycycl Aromat Compd 2020; 42 (02) 623-634
  • 119 Fanta BS, Mekonnen L, Basnet SKC. et al. 2-Anilino-4-(1-methyl-1H-pyrazol-4-yl)pyrimidine-derived CDK2 inhibitors as anticancer agents: design, synthesis & evaluation. Bioorg Med Chem 2023; 80: 117158
  • 120 Fanta BS, Lenjisa J, Teo T. et al. Discovery of N,4-Di(1H-pyrazol-4-yl)pyrimidin-2-amine-derived CDK2 inhibitors as potential anticancer agents: design, synthesis, and evaluation. Molecules 2023; 28 (07) 2951
  • 121 Jing L, Tang Y, Goto M, Lee KH, Xiao Z. SAR study on N 2,N 4-disubstituted pyrimidine-2,4-diamines as effective CDK2/CDK9 inhibitors and antiproliferative agents. RSC Adv 2018; 8 (22) 11871-11885
  • 122 Panicker RC, Chattopadhaya S, Coyne AG, Srinivasan R. Allosteric small-molecule serine/threonine kinase inhibitors. Adv Exp Med Biol 2019; 1163: 253-278
  • 123 Roskoski Jr R. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res 2019; 139: 471-488
  • 124 Martin MP, Alam R, Betzi S, Ingles DJ, Zhu JY, Schönbrunn E. A novel approach to the discovery of small-molecule ligands of CDK2. ChemBioChem 2012; 13 (14) 2128-2136
  • 125 Christodoulou MS, Caporuscio F, Restelli V. et al. Probing an allosteric pocket of CDK2 with small molecules. ChemMedChem 2017; 12 (01) 33-41
  • 126 Rastelli G, Anighoro A, Chripkova M, Carrassa L, Broggini M. Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2. Cell Cycle 2014; 13 (14) 2296-2305
  • 127 Chen H, Zhao Y, Li H. et al. Break CDK2/Cyclin E1 interface allosterically with small peptides. PLoS One 2014; 9 (10) e109154
  • 128 Hu Y, Li S, Liu F, Geng L, Shu X, Zhang J. Discovery of novel nonpeptide allosteric inhibitors interrupting the interaction of CDK2/cyclin A3 by virtual screening and bioassays. Bioorg Med Chem Lett 2015; 25 (19) 4069-4073
  • 129 Carlino L, Christodoulou MS, Restelli V. et al. Structure-activity relationships of hexahydrocyclopenta[c]quinoline derivatives as allosteric inhibitors of CDK2 and EGFR. ChemMedChem 2018; 13 (24) 2627-2634
  • 130 Craven GB, Affron DP, Allen CE. et al. High-throughput kinetic analysis for target-directed covalent ligand discovery. Angew Chem Int Ed Engl 2018; 57 (19) 5257-5261
  • 131 Karthiga A, Tripathi SK, Shanmugam R, Suryanarayanan V, Singh SK. Targeting the cyclin-binding groove site to inhibit the catalytic activity of CDK2/cyclin A complex using p27(KIP1)-derived peptidomimetic inhibitors. J Chem Biol 2014; 8 (01) 11-24
  • 132 Premnath PN, Craig SN, Liu S, McInnes C. Benzamide capped peptidomimetics as non-ATP competitive inhibitors of CDK2 using the REPLACE strategy. Bioorg Med Chem Lett 2016; 26 (15) 3754-3760
  • 133 Li HL, Ma Y, Ma Y. et al. The design of novel inhibitors for treating cancer by targeting CDC25B through disruption of CDC25B-CDK2/Cyclin A interaction using computational approaches. Oncotarget 2017; 8 (20) 33225-33240
  • 134 Song K, Liu X, Huang W. et al. Improved method for the identification and validation of allosteric sites. J Chem Inf Model 2017; 57 (09) 2358-2363
  • 135 Zhang J, Gan Y, Li H. et al. Inhibition of the CDK2 and cyclin A complex leads to autophagic degradation of CDK2 in cancer cells. Nat Commun 2022; 13 (01) 2835
  • 136 Yu B, Du Z, Zhang Y, Li Z, Bian J. Small-molecule degraders of cyclin-dependent kinase protein: a review. Future Med Chem 2022; 14 (03) 167-185
  • 137 Li K, Crews CM. PROTACs: past, present and future. Chem Soc Rev 2022; 51 (12) 5214-5236
  • 138 Zhou F, Chen L, Cao C. et al. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem 2020; 187: 111952
  • 139 Teng M, Jiang J, He Z. et al. Development of CDK2 and CDK5 dual degrader TMX-2172. Angew Chem Int Ed Engl 2020; 59 (33) 13865-13870
  • 140 Wang L, Shao X, Zhong T. et al. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat Chem Biol 2021; 17 (05) 567-575
  • 141 Wei M, Zhao R, Cao Y. et al. First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo . Eur J Med Chem 2021; 209: 112903
  • 142 Hati S, Zallocchi M, Hazlitt R. et al. AZD5438-PROTAC: A selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss. Eur J Med Chem 2021; 226: 113849
  • 143 Merck Sharp & Dohme LLC. A phase 3 study comparing dinaciclib versus ofatumumab in patients with refractory chronic lymphocytic leukemia (p07714). ClinicalTrials.gov identifier: NCT01580228. Updated February 23, 2017 . Accessed December 5, 2023 at: https://clinicaltrials.gov/study/NCT01580228
  • 144 Rusina PV, Lisov AA, Denisova AA, Gandalipov ER, Novikov FN, Shtil AA. Clinical CDK2 inhibitors: trends to selectivity and efficacy. Recent Pat Anticancer Drug Discov 2022; 18 (02) 102-107
  • 145 Pecoraro C, Carbone D, Cascioferro SM, Parrino B, Diana P. Multi or single-kinase inhibitors to counteract drug resistance in cancer: what is new?. Curr Med Chem 2023; 30 (07) 776-782
  • 146 Pan Y, Mader MM. Principles of kinase allosteric inhibition and pocket validation. J Med Chem 2022; 65 (07) 5288-5299
  • 147 Si R, Hai P, Zheng Y. et al. Discovery of intracellular self-assembly protein degraders driven by tumor-specific activatable bioorthogonal reaction. Eur J Med Chem 2023; 257: 115497