CC BY 4.0 · Thromb Haemost
DOI: 10.1055/s-0044-1789592
Review Article

Venous Thromboembolism in Patients with Glioblastoma: Molecular Mechanisms and Clinical Implications

1   Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
,
Nina Bakker
1   Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
,
Johan A. F. Koekkoek
2   Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
,
Henri H. Versteeg*
1   Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
,
Jeroen T. Buijs*
1   Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
› Author Affiliations


Abstract

Patients with glioblastoma are among the cancer patients with the highest risk of developing venous thromboembolism (VTE). Long-term thromboprophylaxis is not generally prescribed because of the increased susceptibility of glioblastoma patients to intracranial hemorrhage. This review provides an overview of the current clinical standard for glioblastoma patients, as well as the molecular and genetic background which underlies the high incidence of VTE. The two main procoagulant proteins involved in glioblastoma-related VTE, podoplanin and tissue factor, are described, in addition to the genetic aberrations that can be linked to a hypercoagulable state in glioblastoma. Furthermore, possible novel biomarkers and future treatment strategies are discussed, along with the potential of sequencing approaches toward personalized risk prediction for VTE. A glioblastoma-specific VTE risk stratification model may help identifying those patients in which the increased risk of bleeding due to extended anticoagulation is outweighed by the decreased risk of VTE.

* These authors contributed equally to this study.




Publication History

Received: 11 April 2024

Accepted: 06 August 2024

Article published online:
21 August 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro-oncol 2020; 22 (12, Suppl 2): iv1-iv96
  • 2 Grochans S, Cybulska AM, Simińska D. et al. Epidemiology of glioblastoma multiforme-literature review. Cancers (Basel) 2022; 14 (10) 2412
  • 3 Koshy M, Villano JL, Dolecek TA. et al. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol 2012; 107 (01) 207-212
  • 4 Brodbelt A, Greenberg D, Winters T, Williams M, Vernon S, Collins VP. (UK) National Cancer Information Network Brain Tumour Group. Glioblastoma in England: 2007-2011. Eur J Cancer 2015; 51 (04) 533-542
  • 5 Bjorland LS, Fluge O, Gilje B, Mahesparan R, Farbu E. Treatment approach and survival from glioblastoma: results from a population-based retrospective cohort study from Western Norway. BMJ Open 2021; 11 (03) e043208
  • 6 Rong Y, Durden DL, Van Meir EG, Brat DJ. ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 2006; 65 (06) 529-539
  • 7 Tehrani M, Friedman TM, Olson JJ, Brat DJ. Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol 2008; 18 (02) 164-171
  • 8 Yust-Katz S, Mandel JJ, Wu J. et al. Venous thromboembolism (VTE) and glioblastoma. J Neurooncol 2015; 124 (01) 87-94
  • 9 Kaptein FHJ, Stals MAM, Kapteijn MY. et al. Incidence and determinants of thrombotic and bleeding complications in patients with glioblastoma. J Thromb Haemost 2022; 20 (07) 1665-1673
  • 10 Horsted F, West J, Grainge MJ. Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis. PLoS Med 2012; 9 (07) e1001275
  • 11 Riedl J, Ay C. Venous thromboembolism in brain tumors: risk factors, molecular mechanisms, and clinical challenges. Semin Thromb Hemost 2019; 45 (04) 334-341
  • 12 Tawil N, Mohammadnia A, Rak J. Oncogenes and cancer associated thrombosis: what can we learn from single cell genomics about risks and mechanisms?. Front Med (Lausanne) 2023; 10: 1252417
  • 13 Eisenbarth D, Wang YA. Glioblastoma heterogeneity at single cell resolution. Oncogene 2023; 42 (27) 2155-2165
  • 14 Magnus N, Gerges N, Jabado N, Rak J. Coagulation-related gene expression profile in glioblastoma is defined by molecular disease subtype. J Thromb Haemost 2013; 11 (06) 1197-1200
  • 15 Li K, Lu D, Guo Y. et al. Trends and patterns of incidence of diffuse glioma in adults in the United States, 1973-2014. Cancer Med 2018; 7 (10) 5281-5290
  • 16 Fernandes C, Costa A, Osorio L. et al. Current standards of care in glioblastoma therapy. In: De Vleeschouwer S. ed. Glioblastoma. Brisbane (AU): Codon Publications; 2017: 197-241
  • 17 Lacroix M, Abi-Said D, Fourney DR. et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001; 95 (02) 190-198
  • 18 Young RM, Jamshidi A, Davis G, Sherman JH. Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med 2015; 3 (09) 121
  • 19 Stupp R, Mason WP, van den Bent MJ. et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352 (10) 987-996
  • 20 Perry JR, Laperriere N, O'Callaghan CJ. et al; Trial Investigators. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med 2017; 376 (11) 1027-1037
  • 21 Butler M, Pongor L, Su YT. et al. MGMT status as a clinical biomarker in glioblastoma. Trends Cancer 2020; 6 (05) 380-391
  • 22 Weller M, Stupp R, Reifenberger G. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine?. Nat Rev Neurol 2010; 6 (01) 39-51
  • 23 Bloch O, Han SJ, Cha S. et al. Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J Neurosurg 2012; 117 (06) 1032-1038
  • 24 Koekkoek JAF, van der Meer PB, Pace A. et al. Palliative care and end-of-life care in adults with malignant brain tumors. Neuro-oncol 2023; 25 (03) 447-456
  • 25 Cenciarini M, Valentino M, Belia S. et al. Dexamethasone in glioblastoma multiforme therapy: mechanisms and controversies. Front Mol Neurosci 2019; 12: 65
  • 26 Zhou L, Shen Y, Huang T. et al. The prognostic effect of dexamethasone on patients with glioblastoma: a systematic review and meta-analysis. Front Pharmacol 2021; 12: 727707
  • 27 van der Meer PB, Taphoorn MJB, Koekkoek JAF. Management of epilepsy in brain tumor patients. Curr Opin Oncol 2022; 34 (06) 685-690
  • 28 Perry JR. Thromboembolic disease in patients with high-grade glioma. Neuro-oncol 2012; 14 (Suppl. 04) iv73-iv80
  • 29 Jenkins EO, Schiff D, Mackman N, Key NS. Venous thromboembolism in malignant gliomas. J Thromb Haemost 2010; 8 (02) 221-227
  • 30 Simanek R, Vormittag R, Hassler M. et al. Venous thromboembolism and survival in patients with high-grade glioma. Neuro-oncol 2007; 9 (02) 89-95
  • 31 Edwin NC, Elson P, Ahluwalia MS, Khorana AA. Venous thromboembolism in patients with glioblastoma: Risk factors and prognostic importance. J Clin Oncol 2015; 33 (15, suppl): e13027-e13027
  • 32 Marras LC, Geerts WH, Perry JR. The risk of venous thromboembolism is increased throughout the course of malignant glioma: an evidence-based review. Cancer 2000; 89 (03) 640-646
  • 33 Semrad TJ, O'Donnell R, Wun T. et al. Epidemiology of venous thromboembolism in 9489 patients with malignant glioma. J Neurosurg 2007; 106 (04) 601-608
  • 34 Eisele A, Seystahl K, Rushing EJ. et al. Venous thromboembolic events in glioblastoma patients: an epidemiological study. Eur J Neurol 2022; 29 (08) 2386-2397
  • 35 Lim G, Ho C, Roldan Urgoti G, Leugner D, Easaw J. Risk of venous thromboembolism in glioblastoma patients. Cureus 2018; 10 (05) e2678
  • 36 Cote DJ, Dawood HY, Smith TR. Venous thromboembolism in patients with high-grade glioma. Semin Thromb Hemost 2016; 42 (08) 877-883
  • 37 Mulder FI, Horváth-Puhó E, van Es N. et al. Venous thromboembolism in cancer patients: a population-based cohort study. Blood 2021; 137 (14) 1959-1969
  • 38 Khalil J, Bensaid B, Elkacemi H. et al. Venous thromboembolism in cancer patients: an underestimated major health problem. World J Surg Oncol 2015; 13: 204
  • 39 Kapteijn MY, Zwaan S, Ter Linden E. et al. Temozolomide and lomustine induce tissue factor expression and procoagulant activity in glioblastoma cells in vitro. Cancers (Basel) 2023; 15 (08) 2347
  • 40 Li X, Huang R, Xu Z. Risk of adverse vascular events in newly diagnosed glioblastoma multiforme patients treated with bevacizumab: a systematic review and meta-analysis. Sci Rep 2015; 5: 14698
  • 41 Walsh DC, Kakkar AK. Thromboembolism in brain tumors. Curr Opin Pulm Med 2001; 7 (05) 326-331
  • 42 Pan E, Tsai JS, Mitchell SB. Retrospective study of venous thromboembolic and intracerebral hemorrhagic events in glioblastoma patients. Anticancer Res 2009; 29 (10) 4309-4313
  • 43 Zoccarato M, Nardetto L, Basile AM, Giometto B, Zagonel V, Lombardi G. Seizures, edema, thrombosis, and hemorrhages: an update review on the medical management of gliomas. Front Oncol 2021; 11: 617966
  • 44 Giustozzi M, Proietti G, Becattini C, Roila F, Agnelli G, Mandalà M. ICH in primary or metastatic brain cancer patients with or without anticoagulant treatment: a systematic review and meta-analysis. Blood Adv 2022; 6 (16) 4873-4883
  • 45 Wakai S, Yamakawa K, Manaka S, Takakura K. Spontaneous intracranial hemorrhage caused by brain tumor: its incidence and clinical significance. Neurosurgery 1982; 10 (04) 437-444
  • 46 Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 2004; 94 (05) 664-670
  • 47 Cheng SY, Nagane M, Huang HS, Cavenee WK. Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc Natl Acad Sci U S A 1997; 94 (22) 12081-12087
  • 48 Farge D, Frere C, Connors JM. et al; International Initiative on Thrombosis and Cancer (ITAC) advisory panel. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol 2022; 23 (07) e334-e347
  • 49 Wang TF, Zwicker JI, Ay C. et al. The use of direct oral anticoagulants for primary thromboprophylaxis in ambulatory cancer patients: Guidance from the SSC of the ISTH. J Thromb Haemost 2019; 17 (10) 1772-1778
  • 50 Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008; 111 (10) 4902-4907
  • 51 Ay C, Dunkler D, Marosi C. et al. Prediction of venous thromboembolism in cancer patients. Blood 2010; 116 (24) 5377-5382
  • 52 van Es N, Ventresca M, Di Nisio M. et al; IPDMA Heparin Use in Cancer Patients Research Group. The Khorana score for prediction of venous thromboembolism in cancer patients: an individual patient data meta-analysis. J Thromb Haemost 2020; 18 (08) 1940-1951
  • 53 Taillibert S, Taillandier L, Le Rhun E. Venous thrombosis in patients with high-grade glioma. Curr Opin Oncol 2015; 27 (06) 516-521
  • 54 Faraoni D, Comes RF, Geerts W, Wiles MD, Force EVGT. ESA VTE Guidelines Task Force. European guidelines on perioperative venous thromboembolism prophylaxis: neurosurgery. Eur J Anaesthesiol 2018; 35 (02) 90-95
  • 55 Khoury MN, Missios S, Edwin N. et al. Intracranial hemorrhage in setting of glioblastoma with venous thromboembolism. Neurooncol Pract 2016; 3 (02) 87-96
  • 56 Mantia C, Uhlmann EJ, Puligandla M, Weber GM, Neuberg D, Zwicker JI. Predicting the higher rate of intracranial hemorrhage in glioma patients receiving therapeutic enoxaparin. Blood 2017; 129 (25) 3379-3385
  • 57 Jo J, Donahue J, Sarai G, Petroni G, Schiff D. Management of venous thromboembolism in high-grade glioma: does low molecular weight heparin increase intracranial bleeding risk?. Neuro-oncol 2022; 24 (03) 455-464
  • 58 Reed-Guy L, Desai AS, Phillips RE. et al. Risk of intracranial hemorrhage with direct oral anticoagulants vs low molecular weight heparin in glioblastoma: a retrospective cohort study. Neuro-oncol 2022; 24 (12) 2172-2179
  • 59 Carney BJ, Uhlmann EJ, Puligandla M. et al. Intracranial hemorrhage with direct oral anticoagulants in patients with brain tumors. J Thromb Haemost 2019; 17 (01) 72-76
  • 60 Swartz AW, Drappatz J. Safety of direct oral anticoagulants in central nervous system malignancies. Oncologist 2021; 26 (05) 427-432
  • 61 Perry JR, Julian JA, Laperriere NJ. et al. PRODIGE: a randomized placebo-controlled trial of dalteparin low-molecular-weight heparin thromboprophylaxis in patients with newly diagnosed malignant glioma. J Thromb Haemost 2010; 8 (09) 1959-1965
  • 62 Khorana AA, Soff GA, Kakkar AK. et al; CASSINI Investigators. Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer. N Engl J Med 2019; 380 (08) 720-728
  • 63 Carrier M, Abou-Nassar K, Mallick R. et al; AVERT Investigators. Apixaban to prevent venous thromboembolism in patients with cancer. N Engl J Med 2019; 380 (08) 711-719
  • 64 Suzuki-Inoue K, Osada M, Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost 2017; 15 (02) 219-229
  • 65 Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 2010; 140 (04) 460-476
  • 66 Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the immune system, and cancer. Front Immunol 2012; 3: 283
  • 67 Shirai T, Inoue O, Tamura S. et al. C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J Thromb Haemost 2017; 15 (03) 513-525
  • 68 Tawil N, Bassawon R, Meehan B. et al. Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles. Blood Adv 2021; 5 (06) 1682-1694
  • 69 Riedl J, Preusser M, Nazari PM. et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood 2017; 129 (13) 1831-1839
  • 70 Mir Seyed Nazari P, Riedl J, Pabinger I, Ay C. The role of podoplanin in cancer-associated thrombosis. Thromb Res 2018; 164 (Suppl. 01) S34-S39
  • 71 Sun C, Xiao L, Zhao Y. et al. Wild-type IDH1 and mutant IDH1 opposingly regulate podoplanin expression in glioma. Transl Oncol 2020; 13 (04) 100758
  • 72 Louis DN, Perry A, Wesseling P. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-oncol 2021; 23 (08) 1231-1251
  • 73 Burdett KB, Unruh D, Drumm M. et al. Determining venous thromboembolism risk in patients with adult-type diffuse glioma. Blood 2023; 141 (11) 1322-1336
  • 74 Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev 2013; 93 (01) 327-358
  • 75 Hjortoe GM, Petersen LC, Albrektsen T. et al. Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood 2004; 103 (08) 3029-3037
  • 76 Liu Y, Mueller BM. Protease-activated receptor-2 regulates vascular endothelial growth factor expression in MDA-MB-231 cells via MAPK pathways. Biochem Biophys Res Commun 2006; 344 (04) 1263-1270
  • 77 Rondon AMR, Kroone C, Kapteijn MY, Versteeg HH, Buijs JT. Role of tissue factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost 2019; 45 (04) 396-412
  • 78 Kocatürk B, Versteeg HH. Tissue factor isoforms in cancer and coagulation: may the best isoform win. Thromb Res 2012; 129 (Suppl. 01) S69-S75
  • 79 Date K, Hall J, Greenman J, Maraveyas A, Madden LA. Tumour and microparticle tissue factor expression and cancer thrombosis. Thromb Res 2013; 131 (02) 109-115
  • 80 Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S. Microparticle-associated tissue factor activity: a link between cancer and thrombosis?. J Thromb Haemost 2007; 5 (03) 520-527
  • 81 Hamada K, Kuratsu J, Saitoh Y, Takeshima H, Nishi T, Ushio Y. Expression of tissue factor correlates with grade of malignancy in human glioma. Cancer 1996; 77 (09) 1877-1883
  • 82 Guan M, Jin J, Su B, Liu WW, Lu Y. Tissue factor expression and angiogenesis in human glioma. Clin Biochem 2002; 35 (04) 321-325
  • 83 Rong Y, Post DE, Pieper RO, Durden DL, Van Meir EG, Brat DJ. PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 2005; 65 (04) 1406-1413
  • 84 Thaler J, Preusser M, Ay C. et al. Intratumoral tissue factor expression and risk of venous thromboembolism in brain tumor patients. Thromb Res 2013; 131 (02) 162-165
  • 85 Cohen JG, Prendergast E, Geddings JE. et al. Evaluation of venous thrombosis and tissue factor in epithelial ovarian cancer. Gynecol Oncol 2017; 146 (01) 146-152
  • 86 Gezelius E, Flou Kristensen A, Bendahl PO. et al. Coagulation biomarkers and prediction of venous thromboembolism and survival in small cell lung cancer: a sub-study of RASTEN - a randomized trial with low molecular weight heparin. PLoS One 2018; 13 (11) e0207387
  • 87 Khorana AA, Francis CW, Menzies KE. et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thromb Haemost 2008; 6 (11) 1983-1985
  • 88 Zwicker JI, Liebman HA, Neuberg D. et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 2009; 15 (22) 6830-6840
  • 89 van Es N, Hisada Y, Di Nisio M. et al. Extracellular vesicles exposing tissue factor for the prediction of venous thromboembolism in patients with cancer: a prospective cohort study. Thromb Res 2018; 166: 54-59
  • 90 Bastida E, Ordinas A, Escolar G, Jamieson GA. Tissue factor in microvesicles shed from U87MG human glioblastoma cells induces coagulation, platelet aggregation, and thrombogenesis. Blood 1984; 64 (01) 177-184
  • 91 Sartori MT, Della Puppa A, Ballin A. et al. Circulating microparticles of glial origin and tissue factor bearing in high-grade glioma: a potential prothrombotic role. Thromb Haemost 2013; 110 (02) 378-385
  • 92 Unruh D, Schwarze SR, Khoury L. et al. Mutant IDH1 and thrombosis in gliomas. Acta Neuropathol 2016; 132 (06) 917-930
  • 93 Thaler J, Ay C, Mackman N. et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thromb Haemost 2012; 10 (07) 1363-1370
  • 94 Rao LV, Kothari H, Pendurthi UR. Tissue factor: mechanisms of decryption. Front Biosci (Elite Ed) 2012; 4 (04) 1513-1527
  • 95 Kunzelmann-Marche C, Satta N, Toti F. et al. The influence exerted by a restricted phospholipid microenvironment on the expression of tissue factor activity at the cell plasma membrane surface. Thromb Haemost 2000; 83 (02) 282-289
  • 96 Ahamed J, Versteeg HH, Kerver M. et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci U S A 2006; 103 (38) 13932-13937
  • 97 Rothmeier AS, Marchese P, Langer F. et al. Tissue factor prothrombotic activity is regulated by integrin-arf6 trafficking. Arterioscler Thromb Vasc Biol 2017; 37 (07) 1323-1331
  • 98 Stopa JD, Zwicker JI. The intersection of protein disulfide isomerase and cancer associated thrombosis. Thromb Res 2018; 164 (Suppl. 01) S130-S135
  • 99 Koizume S, Miyagi Y. Tissue factor in cancer-associated thromboembolism: possible mechanisms and clinical applications. Br J Cancer 2022; 127 (12) 2099-2107
  • 100 Verhaak RG, Hoadley KA, Purdom E. et al; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17 (01) 98-110
  • 101 Wang Q, Hu B, Hu X. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 2017; 32 (01) 42-56.e6
  • 102 Phillips HS, Kharbanda S, Chen R. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006; 9 (03) 157-173
  • 103 Kapteijn MY, Lanting VR, Kaptein FHJ. et al. RNA-sequencing to discover genes and signaling pathways associated with venous thromboembolism in glioblastoma patients: a case-control study. Thromb Res 2023; 232: 27-34
  • 104 Han S, Liu Y, Cai SJ. et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer 2020; 122 (11) 1580-1589
  • 105 Houillier C, Wang X, Kaloshi G. et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 2010; 75 (17) 1560-1566
  • 106 Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel) 2017; 9 (05) 52
  • 107 Crespo I, Vital AL, Gonzalez-Tablas M. et al. Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol 2015; 185 (07) 1820-1833
  • 108 Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP. Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 1991; 51 (08) 2164-2172
  • 109 Brennan CW, Verhaak RG, McKenna A. et al; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013; 155 (02) 462-477
  • 110 Nishikawa R, Ji XD, Harmon RC. et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A 1994; 91 (16) 7727-7731
  • 111 Magnus N, Garnier D, Rak J. Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 2010; 116 (05) 815-818
  • 112 Milsom CC, Yu JL, Mackman N. et al. Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 2008; 68 (24) 10068-10076
  • 113 Duerr EM, Rollbrocker B, Hayashi Y. et al. PTEN mutations in gliomas and glioneuronal tumors. Oncogene 1998; 16 (17) 2259-2264
  • 114 Baeza N, Weller M, Yonekawa Y, Kleihues P, Ohgaki H. PTEN methylation and expression in glioblastomas. Acta Neuropathol 2003; 106 (05) 479-485
  • 115 Rong Y, Belozerov VE, Tucker-Burden C. et al. Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res 2009; 69 (06) 2540-2549
  • 116 Regina S, Valentin JB, Lachot S, Lemarié E, Rollin J, Gruel Y. Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN. Clin Chem 2009; 55 (10) 1834-1842
  • 117 Peterziel H, Müller J, Danner A. et al. Expression of podoplanin in human astrocytic brain tumors is controlled by the PI3K-AKT-AP-1 signaling pathway and promoter methylation. Neuro-oncol 2012; 14 (04) 426-439
  • 118 Huang LE. Impact of CDKN2A/B homozygous deletion on the prognosis and biology of IDH-mutant glioma. Biomedicines 2022; 10 (02) 246
  • 119 Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455 (7216) 1061-1068
  • 120 Zerrouqi A, Pyrzynska B, Brat DJ, Van Meir EG. P14ARF suppresses tumor-induced thrombosis by regulating the tissue factor pathway. Cancer Res 2014; 74 (05) 1371-1378
  • 121 Rao B, Gao Y, Huang J. et al. Mutations of p53 and K-ras correlate TF expression in human colorectal carcinomas: TF downregulation as a marker of poor prognosis. Int J Colorectal Dis 2011; 26 (05) 593-601
  • 122 Dunbar A, Bolton KL, Devlin SM. et al. Genomic profiling identifies somatic mutations predicting thromboembolic risk in patients with solid tumors. Blood 2021; 137 (15) 2103-2113
  • 123 Kapteijn MY, Kaptein FHJ, Stals MAM. et al. Targeted DNA sequencing to identify genetic aberrations in glioblastoma that underlie venous thromboembolism; a cohort study. Thromb Res 2023; 221: 10-18
  • 124 Meadows KN, Bryant P, Pumiglia K. Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 2001; 276 (52) 49289-49298
  • 125 Thaler J, Ay C, Kaider A. et al. Biomarkers predictive of venous thromboembolism in patients with newly diagnosed high-grade gliomas. Neuro-oncol 2014; 16 (12) 1645-1651
  • 126 Navone SE, Guarnaccia L, Locatelli M. et al. Significance and prognostic value of the coagulation profile in patients with glioblastoma: implications for personalized therapy. World Neurosurg 2019; 121: e621-e629
  • 127 Streiff MB, Ye X, Kickler TS. et al. A prospective multicenter study of venous thromboembolism in patients with newly-diagnosed high-grade glioma: hazard rate and risk factors. J Neurooncol 2015; 124 (02) 299-305
  • 128 Simanek R, Vormittag R, Ay C. et al. High platelet count associated with venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). J Thromb Haemost 2010; 8 (01) 114-120
  • 129 Shibahara J, Kashima T, Kikuchi Y, Kunita A, Fukayama M. Podoplanin is expressed in subsets of tumors of the central nervous system. Virchows Arch 2006; 448 (04) 493-499
  • 130 Kato Y, Kaneko MK, Kuno A. et al. Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem Biophys Res Commun 2006; 349 (04) 1301-1307
  • 131 Shiina S, Ohno M, Ohka F. et al. CAR T cells targeting podoplanin reduce orthotopic glioblastomas in mouse brains. Cancer Immunol Res 2016; 4 (03) 259-268
  • 132 Jo J, Diaz M, Horbinski C. et al. Epidemiology, biology, and management of venous thromboembolism in gliomas: an interdisciplinary review. Neuro-oncol 2023; 25 (08) 1381-1394
  • 133 Zwicker JI, Liebman HA, Bauer KA. et al. Prediction and prevention of thromboembolic events with enoxaparin in cancer patients with elevated tissue factor-bearing microparticles: a randomized-controlled phase II trial (the Microtec study). Br J Haematol 2013; 160 (04) 530-537
  • 134 Yanamandra N, Kondraganti S, Gondi CS. et al. Recombinant adeno-associated virus (rAAV) expressing TFPI-2 inhibits invasion, angiogenesis and tumor growth in a human glioblastoma cell line. Int J Cancer 2005; 115 (06) 998-1005
  • 135 Harter PN, Dützmann S, Drott U. et al. Anti-tissue factor (TF9-10H10) treatment reduces tumor cell invasiveness in a novel migratory glioma model. Neuropathology 2013; 33 (05) 515-525
  • 136 Carneiro-Lobo TC, Konig S, Machado DE. et al. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J Thromb Haemost 2009; 7 (11) 1855-1864
  • 137 Ahmadi SE, Shabannezhad A, Kahrizi A. et al. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11 (01) 60