Semin Thromb Hemost 2025; 51(02): 227-235
DOI: 10.1055/s-0044-1789596
Review Article

Inherited Disorders of the Fibrinolytic Pathway: Pathogenic Phenotypes and Diagnostic Considerations of Extremely Rare Disorders

Maha Al-Ghafry
1   Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
2   Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, Florida
,
Mouhamed Yazan Abou-Ismail
3   Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
,
Suchitra S. Acharya
4   Division of Pediatric Hematology, Oncology and Stem Cell Transplant - Cohen Children's Medical Center, New Hyde Park, New York
5   Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
› Institutsangaben

Abstract

Fibrinolysis is initiated by the activation of plasminogen to plasmin via tissue-plasminogen activator (tPA) and urokinase-plasminogen activator (uPA); plasmin then converts fibrin to fibrin degradation products (FDPs). The antifibrinolytics counterbalancing this system include plasminogen activator inhibitor-1 (PAI-1), which inhibits tPA and uPA, α-2 antiplasmin (α2AP), which inhibits plasmin, and thrombin activatable fibrinolysis inhibitor, which inhibits the conversion of fibrin to FDP. Inherited disorders of the fibrinolytic pathway are rare and primarily have hemorrhagic phenotypes in humans: PAI-1 deficiency, α2AP deficiency, and Quebec platelet disorder. Patients with these disorders are usually treated for bleeds or receive prophylaxis to prevent bleeds in the surgical setting, with pharmacological antifibrinolytics such as aminocaproic acid and tranexamic acid. Disorders of the fibrinolytic pathway with fibrin deposition are extremely rare, mostly noted in patients with plasminogen deficiency, who have more recently benefited from advances in human plasma-derived plasminogen concentrates administered intravenously or locally. These disorders can be very difficult to diagnose using conventional or even specialized coagulation testing, as testing can be nonspecific or have low sensitivity. Testing of the corresponding protein's activity and antigen (where applicable) can be obtained in specialized centres, and routine laboratory measures are not diagnostic. Genetic testing of the pathogenic mutations is recommended in patients with a high suspicion of an inherited disorder of the fibrinolytic pathway.



Publikationsverlauf

Artikel online veröffentlicht:
19. September 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Mutch NJ, Medcalf RL. The fibrinolysis renaissance. J Thromb Haemost 2023; 21 (12) 3304-3316
  • 2 Raum D, Marcus D, Alper CA, Levey R, Taylor PD, Starzl TE. Synthesis of human plasminogen by the liver. Science 1980; 208 (4447): 1036-1037
  • 3 Castellino F. Plasmin. In: Barrett A, Rawlings N, Woessner J. eds. Handbook of Proteolytic Enzymes. 3rd ed.. Elsevier; 2012: 2958 , chap 48
  • 4 Sarangi SN, Acharya SS. Disorders of coagulation. In: Fish J, Lipton J, Lanzkowsky P. eds. Lanzkowsky's Manual of Pediatric Hematology and Oncology. 7th ed.. Elsevier; 2022: 287-340 , chap 13
  • 5 Collen D, Ong EB, Johnson AJ. Human plasminogen: in vitro and in vivo evidence for the biological integrity of NH2-terminal glutamic acid plasminogen. Thromb Res 1975; 7 (04) 515-529
  • 6 Keragala CB, Medcalf RL. Plasminogen: an enigmatic zymogen. Blood 2021; 137 (21) 2881-2889
  • 7 Yuan H, Vance KM, Junge CE. et al. The serine protease plasmin cleaves the amino-terminal domain of the NR2A subunit to relieve zinc inhibition of the N-methyl-D-aspartate receptors. J Biol Chem 2009; 284 (19) 12862-12873
  • 8 Harpel PC. Alpha2-plasmin inhibitor and alpha2-macroglobulin-plasmin complexes in plasma. Quantitation by an enzyme-linked differential antibody immunosorbent assay. J Clin Invest 1981; 68 (01) 46-55
  • 9 Brown EW, Ravindran S, Patston PA. The reaction between plasmin and C1-inhibitor results in plasmin inhibition by the serpin mechanism. Blood Coagul Fibrinolysis 2002; 13 (08) 711-714
  • 10 Reed GL, Houng AK, Singh S, Wang D. α2-antiplasmin: new insights and opportunities for ischemic stroke. Semin Thromb Hemost 2017; 43 (02) 191-199
  • 11 Flemmig M, Melzig MF. Serine-proteases as plasminogen activators in terms of fibrinolysis. J Pharm Pharmacol 2012; 64 (08) 1025-1039
  • 12 Rondeau E, Ochi S, Lacave R. et al. Urokinase synthesis and binding by glomerular epithelial cells in culture. Kidney Int 1989; 36 (04) 593-600
  • 13 Pennica D, Holmes WE, Kohr WJ. et al. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 1983; 301 (5897): 214-221
  • 14 Fritsma GA. Laboratory evaluation of hemostasis. In: Keohane EM, Otto CN, Walenga JM. eds. Rodak's Hematology: Clinical Principles and Applications. 6th ed.. Elsevier; 2020: 765-792 , chap 42
  • 15 Günzler WA, Steffens GJ, Otting F, Kim SM, Frankus E, Flohé L. The primary structure of high molecular mass urokinase from human urine. The complete amino acid sequence of the A chain. Hoppe Seylers Z Physiol Chem 1982; 363 (10) 1155-1165
  • 16 Lobov S, Croucher DR, Saunders DN, Ranson M. Plasminogen activator inhibitor type 2 inhibits cell surface associated tissue plasminogen activator in vitro: potential receptor interactions. Thromb Haemost 2008; 100 (02) 319-329
  • 17 Irigoyen JP, Muñoz-Cánoves P, Montero L, Koziczak M, Nagamine Y. The plasminogen activator system: biology and regulation. Cell Mol Life Sci 1999; 56 (1-2): 104-132
  • 18 Jankun J. Remarkable extension of PAI-1 half-life surprisingly brings no changes to its structure. Int J Mol Med 2012; 29 (01) 61-64
  • 19 Ismail AA, Shaker BT, Bajou K. The plasminogen-activator plasmin system in physiological and pathophysiological angiogenesis. Int J Mol Sci 2021; 23 (01) 337
  • 20 Iwaki T, Urano T, Umemura K. PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol 2012; 157 (03) 291-298
  • 21 Lijnen HR. Elements of the fibrinolytic system. Ann N Y Acad Sci 2001; 936 (01) 226-236
  • 22 Carpenter SL, Mathew P. α2-antiplasmin and its deficiency: fibrinolysis out of balance. Haemophilia 2008; 14 (06) 1250-1254
  • 23 Lu BGC, Sofian T, Law RHP, Coughlin PB, Horvath AJ. Contribution of conserved lysine residues in the α2-antiplasmin C terminus to plasmin binding and inhibition. J Biol Chem 2011; 286 (28) 24544-24552
  • 24 Singh S, Saleem S, Reed GL. Alpha2-antiplasmin: the devil you don't know in cerebrovascular and cardiovascular disease. Front Cardiovasc Med 2020; 7: 608899
  • 25 Bajzar L, Morser J, Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 1996; 271 (28) 16603-16608
  • 26 Mutch NJ, Thomas L, Moore NR, Lisiak KM, Booth NA. TAFIa, PAI-1 and α-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots. J Thromb Haemost 2007; 5 (04) 812-817
  • 27 Sillen M, Declerck PJ. Thrombin activatable fibrinolysis inhibitor (TAFI): an updated narrative review. Int J Mol Sci 2021; 22 (07) 3670
  • 28 Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 2015; 29 (01) 17-24
  • 29 Favier R, Aoki N, de Moerloose P. Congenital α(2)-plasmin inhibitor deficiencies: a review. Br J Haematol 2001; 114 (01) 4-10
  • 30 Lee SG, Fralick J, Wallis CJD, Boctor M, Sholzberg M, Fralick M. Systematic review of hematuria and acute renal failure with tranexamic acid. Eur J Haematol 2022; 108 (06) 510-517
  • 31 Saes JL, Schols SEM, van Heerde WL, Nijziel MR. Hemorrhagic disorders of fibrinolysis: a clinical review. J Thromb Haemost 2018; 16 (08) 1498-1509
  • 32 Heiman M, Gupta S, Shapiro AD. The obstetric, gynaecological and fertility implications of homozygous PAI-1 deficiency: single-centre experience. Haemophilia 2014; 20 (03) 407-412
  • 33 Mehta R, Shapiro AD. Plasminogen activator inhibitor type 1 deficiency. Haemophilia 2008; 14 (06) 1255-1260
  • 34 Angleton P, Chandler WL, Schmer G. Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation 1989; 79 (01) 101-106
  • 35 Ågren A, Wiman B, Stiller V. et al. Evaluation of low PAI-1 activity as a risk factor for hemorrhagic diathesis. J Thromb Haemost 2006; 4 (01) 201-208
  • 36 Heiman M, Gupta S, Lewandowska M, Shapiro AD. Complete plasminogen activator inhibitor 1 deficiency. In: Adam MP, Feldman J, Mirzaa GM. et al, eds. GeneReviews. 2017. www.ncbi.nlm.nih.gov/books/NBK447152/
  • 37 Agren A, Wiman B, Schulman S. Laboratory evidence of hyperfibrinolysis in association with low plasminogen activator inhibitor type 1 activity. Blood Coagul Fibrinolysis 2007; 18 (07) 657-660
  • 38 Aoki N. Genetic abnormalities of the fibrinolytic system. Semin Thromb Hemost 1984; 10 (01) 42-50
  • 39 Okajima K, Kohno I, Soe G, Okabe H, Takatsuki K, Binder BR. Direct evidence for systemic fibrinogenolysis in patients with acquired α 2-plasmin inhibitor deficiency. Am J Hematol 1994; 45 (01) 16-24
  • 40 Egan G, Pluthero FG, Bouskill V. et al. Abnormal fibrinolysis recognized by thromboelastography in a case of severe bleeding with normal coagulation and platelet function, leads to detection of a novel SERPINF2 variant causing severe alpha-2-antiplasmin deficiency. Br J Haematol 2019; 186 (06) e198-e201
  • 41 Shahian DM, Levine JD. Open-heart surgery in a patient with heterozygous alpha 2-antiplasmin deficiency. Perioperative strategies in the first reported case. Chest 1990; 97 (06) 1488-1490
  • 42 Jain S, Acharya SS. Inherited disorders of the fibrinolytic pathway. Transfus Apher Sci 2019; 58 (05) 572-577
  • 43 Diamandis M, Paterson AD, Rommens JM. et al. Quebec platelet disorder is linked to the urokinase plasminogen activator gene (PLAU) and increases expression of the linked allele in megakaryocytes. Blood 2009; 113 (07) 1543-1546
  • 44 Paterson AD, Rommens JM, Bharaj B. et al. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood 2010; 115 (06) 1264-1266
  • 45 McKay H, Derome F, Haq MA. et al. Bleeding risks associated with inheritance of the Quebec platelet disorder. Blood 2004; 104 (01) 159-165
  • 46 Tracy PB, Giles AR, Mann KG, Eide LL, Hoogendoorn H, Rivard GE. Factor V (Quebec): a bleeding diathesis associated with a qualitative platelet Factor V deficiency. J Clin Invest 1984; 74 (04) 1221-1228
  • 47 Blavignac J, Bunimov N, Rivard GE, Hayward CPM. Quebec platelet disorder: update on pathogenesis, diagnosis, and treatment. Semin Thromb Hemost 2011; 37 (06) 713-720
  • 48 Hayward CP, Rivard GE. Quebec platelet disorder. Expert Rev Hematol 2011; 4 (02) 137-141
  • 49 Schuster V, Hügle B, Tefs K. Plasminogen deficiency. J Thromb Haemost 2007; 5 (12) 2315-2322
  • 50 Klammt J, Kobelt L, Aktas D. et al. Identification of three novel plasminogen (PLG) gene mutations in a series of 23 patients with low PLG activity. Thromb Haemost 2011; 105 (03) 454-460
  • 51 Shapiro AD, Menegatti M, Palla R. et al. An international registry of patients with plasminogen deficiency (HISTORY). Haematologica 2020; 105 (03) 554-561
  • 52 Okamoto A, Sakata T, Mannami T. et al. Population-based distribution of plasminogen activity and estimated prevalence and relevance to thrombotic diseases of plasminogen deficiency in the Japanese: the Suita Study. J Thromb Haemost 2003; 1 (11) 2397-2403
  • 53 Kızılocak H, Ozdemir N, Dikme G. et al. Treatment of plasminogen deficiency patients with fresh frozen plasma. Pediatr Blood Cancer 2018; 65 (02) e26779
  • 54 Shapiro AD, Nakar C, Parker JM. et al. Plasminogen replacement therapy for the treatment of children and adults with congenital plasminogen deficiency. Blood 2018; 131 (12) 1301-1310
  • 55 Shapiro AD, Nakar C, Parker JM, Thibaudeau K, Crea R, Sandset PM. Plasminogen, human-tvmh for the treatment of children and adults with plasminogen deficiency type 1. Haemophilia 2023; 29 (06) 1556-1564
  • 56 Caputo R, Shapiro AD, Sartori MT. et al. Treatment of ligneous conjunctivitis with plasminogen eyedrops. Ophthalmology 2022; 129 (08) 955-957
  • 57 Tsantes AE, Nikolopoulos GK, Bagos PG, Bonovas S, Kopterides P, Vaiopoulos G. The effect of the plasminogen activator inhibitor-1 4G/5G polymorphism on the thrombotic risk. Thromb Res 2008; 122 (06) 736-742
  • 58 Nikolopoulos GK, Bagos PG, Tsangaris I. et al. The association between plasminogen activator inhibitor type 1 (PAI-1) levels, PAI-1 4G/5G polymorphism, and myocardial infarction: a Mendelian randomization meta-analysis. Clin Chem Lab Med 2014; 52 (07) 937-950
  • 59 Lane DA, Grant PJ. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 2000; 95 (05) 1517-1532
  • 60 Jood K, Ladenvall P, Tjärnlund-Wolf A. et al. Fibrinolytic gene polymorphism and ischemic stroke. Stroke 2005; 36 (10) 2077-2081
  • 61 Sartori MT, Danesin C, Saggiorato G. et al. The PAI-1 gene 4G/5G polymorphism and deep vein thrombosis in patients with inherited thrombophilia. Clin Appl Thromb Hemost 2003; 9 (04) 299-307
  • 62 Shi J, Zhi P, Chen J, Wu P, Tan S. Genetic variations in the thrombin-activatable fibrinolysis inhibitor gene and risk of cardiovascular disease: a systematic review and meta-analysis. Thromb Res 2014; 134 (03) 610-616
  • 63 Lowe ML, Cannon DC. Improved method for euglobulin clot lysis time. Clin Biochem 1975; 8 (03) 206-212
  • 64 Glassman A, Abram M, Baxter G, Swett A. Euglobulin lysis times: an update. Ann Clin Lab Sci 1993; 23 (05) 329-332
  • 65 Whiting D, DiNardo JA. TEG and ROTEM: technology and clinical applications. Am J Hematol 2014; 89 (02) 228-232
  • 66 Hartmann J, Hermelin D, Levy JH. Viscoelastic testing: an illustrated review of technology and clinical applications. Res Pract Thromb Haemost 2022; 7 (01) 100031
  • 67 Görlinger K, Pérez-Ferrer A, Dirkmann D. et al. The role of evidence-based algorithms for rotational thromboelastometry-guided bleeding management. Korean J Anesthesiol 2019; 72 (04) 297-322
  • 68 Haas T, Görlinger K, Grassetto A. et al. Thromboelastometry for guiding bleeding management of the critically ill patient: a systematic review of the literature. Minerva Anestesiol 2014; 80 (12) 1320-1335
  • 69 Rech MA, Gilbert BW, Nei S, Garg R, Brown CS. The clot thickens: how to use viscoelastic testing in critical illness. J Am Coll Clin Pharm 2023; 6 (08) 954-963