CC BY 4.0 · Glob Med Genet 2024; 11(04): 278-284
DOI: 10.1055/s-0044-1790231
Review Article

Potential Mechanism and Perspectives of Mesenchymal Stem Cell Therapy for Ischemic Stroke: A Review

Pengcheng Zhu#
1   Department of Intervention, Encephalopathy Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
,
Hongtu Tan#
1   Department of Intervention, Encephalopathy Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
,
Haobo Gao#
1   Department of Intervention, Encephalopathy Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
,
Jiabin Wang
1   Department of Intervention, Encephalopathy Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
,
Yangyang Liu
1   Department of Intervention, Encephalopathy Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
,
Dongyi Yang
1   Department of Intervention, Encephalopathy Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
,
Tao Wu
1   Department of Intervention, Encephalopathy Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
› Author Affiliations

Abstract

Mesenchymal stem cells (MSCs), as a stem cell type with multiple differentiation potentials and immune regulatory abilities, have shown broad prospects in the treatment of ischemic stroke in recent years. The main characteristics of MSCs include their self-renewal ability, differentiation potential for different types of cells, and the ability to secrete various bioactive factors such as cytokines, chemokines, and growth factors, which play a key role in tissue repair and regeneration. In the treatment of ischemic stroke, MSCs exert therapeutic effects through various mechanisms, including promoting vascular regeneration of damaged brain tissue, reducing inflammatory responses, and protecting neurons from damage caused by apoptosis. Research have shown that MSCs can promote the repair of ischemic areas by releasing neurotrophic factors and angiogenic factors, while inhibiting immune responses triggered by ischemia, thereby improving neurological function. With the in-depth study of its biological mechanism, MSCs have gradually shown good safety and effectiveness in clinical applications. Therefore, fully exploring and utilizing the potential of MSCs in the treatment of ischemic stroke may provide new ideas and solutions for future neural repair and regenerative medicine.

# These authors contributed equally to this work.




Publication History

Article published online:
02 September 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Favate AS, Younger DS. Epidemiology of ischemic stroke. Neurol Clin 2016; 34 (04) 967-980
  • 2 Tsivgoulis G, Katsanos AH, Ornello R, Sacco S. Ischemic stroke epidemiology during the COVID-19 pandemic: navigating uncharted waters with changing tides. Stroke 2020; 51 (07) 1924-1926
  • 3 GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390 (10100): 1151-1210
  • 4 Wang DL, Liu JM, Yang G, Peng B, Wang YL. The prevention and treatment of stroke still face huge challenges—brief report on stroke prevention and treatment in China, 2018. Chin Circ J 2019; 34 (02) 105-119
  • 5 Chao BH, Liu JM, Wang YL. et al. Stroke prevention and control in China: achievements, challenges and responses. Chin Circ J 2019; 34 (07) 625-631
  • 6 Wang W, Jiang B, Sun H. et al; NESS-China Investigators. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults. Circulation 2017; 135 (08) 759-771
  • 7 Wang YN, Wu SM, Liu M. Temporal trends and characteristics of stroke in China in the past 15 years. West Chin Med J 2021; 36 (06) 803-807
  • 8 Alonso de Leciñana M, Egido JA, Casado I. et al; Ad Hoc Committee of the SEN Study Group for Cerebrovascular Diseases, Spanish Neurological Society. Guidelines for the treatment of acute ischaemic stroke. Neurologia 2014; 29 (02) 102-122
  • 9 Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 2014; 2014 (07) CD000213
  • 10 Crişan S, Petriş AO, Petrescu L, Luca CT. Current perspectives in facilitated angioplasty. Am J Ther 2019; 26 (02) e208-e212
  • 11 Powers WJ, Rabinstein AA, Ackerson T. et al; American Heart Association Stroke Council. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2018; 49 (03) e46-e110
  • 12 Livesay SL. Clinical review and implications of the guideline for the early management of patients with acute ischemic stroke. AACN Adv Crit Care 2014; 25 (02) 130-141
  • 13 Klein-Ritter D. An evidence-based review of the AMA/AHA guideline for the primary prevention of ischemic stroke. Geriatrics 2009; 64 (09) 16-20 , 28
  • 14 Derex L, Cho TH. Mechanical thrombectomy in acute ischemic stroke. Rev Neurol (Paris) 2017; 173 (03) 106-113
  • 15 Stonesifer C, Corey S, Ghanekar S, Diamandis Z, Acosta SA, Borlongan CV. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158: 94-131
  • 16 Tremolada C, Colombo V, Ventura C. Adipose tissue and mesenchymal stem cells: state of the art and Lipogems technology development. Curr Stem Cell Rep 2016; 2 (03) 304-312
  • 17 Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E. Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int 2016; 2016: 4709572
  • 18 Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant 2015; 24 (03) 339-347
  • 19 Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells 2019; 8 (08) 784
  • 20 Copeland N, Harris D, Gaballa MA. Human umbilical cord blood stem cells, myocardial infarction and stroke. Clin Med (Lond) 2009; 9 (04) 342-345
  • 21 Renesme L, Pierro M, Cobey KD. et al. Definition and characteristics of mesenchymal stromal cells in preclinical and clinical studies: a scoping review. Stem Cells Transl Med 2022; 11 (01) 44-54
  • 22 Li Z, Han Z, Han ZC. Mesenchymal stem cells in clinical trials for immune disorders. Glob Med Genet 2024; 11 (03) 196-199
  • 23 Fiori A, Uhlig S, Klüter H, Bieback K. Human adipose tissue-derived mesenchymal stromal cells inhibit CD4+ T cell proliferation and induce regulatory T cells as well as CD127 expression on CD4+CD25+ T cells. Cells 2021; 10 (01) 58
  • 24 Malcherek G, Jin N, Hückelhoven AG. et al. Mesenchymal stromal cells inhibit proliferation of virus-specific CD8(+) T cells. Leukemia 2014; 28 (12) 2388-2394
  • 25 Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol 2013; 4: 201
  • 26 Zhao G, Ge Y, Zhang C. et al. Progress of mesenchymal stem cell-derived exosomes in tissue repair. Curr Pharm Des 2020; 26 (17) 2022-2037
  • 27 Sharma AR, Jaiswal RK, Shinde Kamble S. et al. Chronic inflammation on gingiva-derived mesenchymal stem cells. Bioinformation 2023; 19 (01) 138-142
  • 28 Morata-Tarifa C, Macías-Sánchez MDM, Gutiérrez-Pizarraya A, Sanchez-Pernaute R. Mesenchymal stromal cells for the prophylaxis and treatment of graft-versus-host disease-a meta-analysis. Stem Cell Res Ther 2020; 11 (01) 64
  • 29 Liang J, Wang D, Dominique F, Sun L. Mesenchymal stem cells for treating autoimmune diseases: the Chinese experience from lab to clinics. Curr Res Transl Med 2016; 64 (02) 115-120
  • 30 Wei P, Bao R. Intra-articular mesenchymal stem cell injection for knee osteoarthritis: mechanisms and clinical evidence. Int J Mol Sci 2022; 24 (01) 59
  • 31 Xiang XN, Zhu SY, He HC, Yu X, Xu Y, He CQ. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther 2022; 13 (01) 14
  • 32 Mazzella M, Walker K, Cormier C. et al. Regulation of self-renewal and senescence in primitive mesenchymal stem cells by Wnt and TGFβ signaling. Stem Cell Res Ther 2023; 14 (01) 305
  • 33 Mazzella M, Walker K, Cormier C. et al. WNT and VEGF/PDGF signaling regulate self-renewal in primitive mesenchymal stem cells. . Res Sq 2023
  • 34 Dudakovic A, Camilleri E, Riester SM. et al. High-resolution molecular validation of self-renewal and spontaneous differentiation in clinical-grade adipose-tissue derived human mesenchymal stem cells. J Cell Biochem 2014; 115 (10) 1816-1828
  • 35 Zhang H, Fu H, Fang H. et al. Epigenetic regulation of methylation in determining the fate of dental mesenchymal stem cells. Stem Cells Int 2022; 2022: 5015856
  • 36 Wang WH, Liu Y, Lv Y, Zhao YR, Wang HP. Progress in the study of cardiomyogenic differentiation of bone mesenchymal stem cells. Acta Med Univ Sci Technol Huazhong. 2021; 50 (06) 811-816
  • 37 Li Y, Yang J, Fu G. et al. [Human umbilical cord mesenchymal stem cells differentiate into neuron-like cells after induction with B27-supplemented serum-free medium]. Nan Fang Yi Ke Da Xue Xue Bao 2020; 40 (09) 1340-1345
  • 38 Lee HK, Kim HS, Pyo M. et al. Phorbol ester activates human mesenchymal stem cells to inhibit B cells and ameliorate lupus symptoms in MRL.Fas lpr mice. Theranostics 2020; 10 (22) 10186-10199
  • 39 Li A, Guo F, Pan Q. et al. Mesenchymal stem cell therapy: hope for patients with systemic lupus erythematosus. Front Immunol 2021; 12: 728190
  • 40 Zhou T, Li HY, Liao C, Lin W, Lin S. Clinical efficacy and safety of mesenchymal stem cells for systemic lupus erythematosus. Stem Cells Int 2020; 2020: 6518508
  • 41 Sarsenova M, Issabekova A, Abisheva S, Rutskaya-Moroshan K, Ogay V, Saparov A. Mesenchymal stem cell-based therapy for rheumatoid arthritis. Int J Mol Sci 2021; 22 (21) 11592
  • 42 Adas G, Koc B, Adas M. et al. Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection. Langenbecks Arch Surg 2016; 401 (05) 725-740
  • 43 Attar A, Farjoud Kouhanjani M, Hessami K. et al. Effect of once versus twice intracoronary injection of allogeneic-derived mesenchymal stromal cells after acute myocardial infarction: BOOSTER-TAHA7 randomized clinical trial. Stem Cell Res Ther 2023; 14 (01) 264
  • 44 Asgari Taei A, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother 2021; 140: 111709
  • 45 Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2014; 2: 702-714
  • 46 Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K. et al. Intersecting pathways: the role of metabolic dysregulation, gastrointestinal microbiome, and inflammation in acute ischemic stroke pathogenesis and outcomes. J Clin Med 2024; 13 (14) 4258
  • 47 Zhou L, Liang J, Xiong T. Research progress of mesenchymal stem cell-derived exosomes on inflammatory response after ischemic stroke. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51 (04) 500-506
  • 48 Becker KJ. Targeting the central nervous system inflammatory response in ischemic stroke. Curr Opin Neurol 2001; 14 (03) 349-353
  • 49 Liddelow SA, Guttenplan KA, Clarke LE. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541 (7638): 481-487
  • 50 Nakajima M, Nito C, Sowa K. et al. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol Ther Methods Clin Dev 2017; 6: 102-111
  • 51 Yang Y, Liu Q, Deng S. et al. Human umbilical cord derived mesenchymal stem cells overexpressing HO-1 attenuate neural injury and enhance functional recovery by inhibiting inflammation in stroke mice. CNS Neurosci Ther 2024; 30 (02) e14412
  • 52 Lin SL, Lee W, Liu SP, Chang YW, Jeng LB, Shyu WC. Novel programmed death ligand 1-AKT-engineered mesenchymal stem cells promote neuroplasticity to target stroke therapy. Mol Neurobiol 2024; 61 (07) 3819-3835
  • 53 Chung JW, Chang WH, Bang OY. et al; STARTING-2 Collaborators. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke. Neurology 2021; 96 (07) e1012-e1023
  • 54 Levy ML, Crawford JR, Dib N, Verkh L, Tankovich N, Cramer SC. Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke. Stroke 2019; 50 (10) 2835-2841
  • 55 Zhai L, Maimaitiming Z, Cao X, Xu Y, Jin J. Nitrogen-doped carbon nanocages and human umbilical cord mesenchymal stem cells cooperatively inhibit neuroinflammation and protect against ischemic stroke. Neurosci Lett 2019; 708: 134346
  • 56 Asgari Taei A, Dargahi L, Khodabakhsh P, Kadivar M, Farahmandfar M. Hippocampal neuroprotection mediated by secretome of human mesenchymal stem cells against experimental stroke. CNS Neurosci Ther 2022; 28 (09) 1425-1438
  • 57 Gutiérrez-Fernández M, Rodríguez-Frutos B, Alvarez-Grech J. et al. Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience 2011; 175: 394-405
  • 58 Stein J, Rodstein BM, Levine SR. et al; Northeast Cerebrovascular Consortium Stroke Rehabilitation and Recovery Delphi Study Group. Which road to recovery? Factors influencing postacute stroke discharge destinations: a Delphi study. Stroke 2022; 53 (03) 947-955
  • 59 Moñivas Gallego E, Zurita Castillo M. Mesenchymal stem cell therapy in ischemic stroke trials. A systematic review. Regen Ther 2024; 27: 301-306
  • 60 Jiang F, Ma J, Liang Y, Niu Y, Chen N, Shen M. Amniotic mesenchymal stem cells can enhance angiogenic capacity via MMPs in vitro and in vivo. BioMed Res Int 2015; 2015: 324014
  • 61 Brooks B, Ebedes D, Usmani A, Gonzales-Portillo JV, Gonzales-Portillo D, Borlongan CV. Mesenchymal stromal cells in ischemic brain injury. Cells 2022; 11 (06) 1013
  • 62 Jingli Y, Jing W, Saeed Y. Ischemic brain stroke and mesenchymal stem cells: an overview of molecular mechanisms and therapeutic potential. Stem Cells Int 2022; 2022: 5930244
  • 63 Yin C, Liang Y, Zhang J. et al. Umbilical cord-derived mesenchymal stem cells relieve hindlimb ischemia through enhancing angiogenesis in tree shrews. Stem Cells Int 2016; 2016: 9742034
  • 64 Oshita J, Okazaki T, Mitsuhara T. et al. Early transplantation of human cranial bone-derived mesenchymal stem cells enhances functional recovery in ischemic stroke model rats. Neurol Med Chir (Tokyo) 2020; 60 (02) 83-93
  • 65 Li T, Su D, Lu H. et al. Recombinant human brain natriuretic peptide attenuates ischemic brain injury in mice by inhibiting oxidative stress and cell apoptosis via activation of PI3K/AKT/Nrf2/HO-1 pathway. Exp Brain Res 2023; 241 (11-12): 2751-2763
  • 66 Calió ML, Marinho DS, Ko GM. et al. Transplantation of bone marrow mesenchymal stem cells decreases oxidative stress, apoptosis, and hippocampal damage in brain of a spontaneous stroke model. Free Radic Biol Med 2014; 70: 141-154
  • 67 Chen H, Zhou L. Treatment of ischemic stroke with modified mesenchymal stem cells. Int J Med Sci 2022; 19 (07) 1155-1162
  • 68 Kuang Y, Zheng X, Zhang L. et al. Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of miR-25. J Extracell Vesicles 2020; 10 (01) e12024
  • 69 Zheng Z, Zhang L, Qu Y. et al. Mesenchymal stem cells protect against hypoxia-ischemia brain damage by enhancing autophagy through brain derived neurotrophic factor/mammalian target of rapamycin signaling pathway. Stem Cells 2018; 36 (07) 1109-1121
  • 70 Chi L, Huang Y, Mao Y, Wu K, Zhang L, Nan G. Tail vein infusion of adipose-derived mesenchymal stem cell alleviated inflammatory response and improved blood brain barrier condition by suppressing endoplasmic reticulum stress in a middle cerebral artery occlusion rat model. Med Sci Monit 2018; 24: 3946-3957
  • 71 Tseng N, Lambie SC, Huynh CQ. et al. Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: the role of Miro1. J Cereb Blood Flow Metab 2021; 41 (04) 761-770