Subscribe to RSS
DOI: 10.1055/s-0044-1790601
Mice Engrafted with Human Liver Cells
Abstract
Rodents are commonly employed to model human liver conditions, although species differences can restrict their translational relevance. To overcome some of these limitations, researchers have long pursued human hepatocyte transplantation into rodents. More than 20 years ago, the first primary human hepatocyte transplantations into immunodeficient mice with liver injury were able to support hepatitis B and C virus infections, as these viruses cannot replicate in murine hepatocytes. Since then, hepatocyte chimeric mouse models have transitioned into mainstream preclinical research and are now employed in a diverse array of liver conditions beyond viral hepatitis, including malaria, drug metabolism, liver-targeting gene therapy, metabolic dysfunction-associated steatotic liver disease, lipoprotein and bile acid biology, and others. Concurrently, endeavors to cotransplant other cell types and humanize immune and other nonparenchymal compartments have seen growing success. Looking ahead, several challenges remain. These include enhancing immune functionality in mice doubly humanized with hepatocytes and immune systems, efficiently creating mice with genetically altered grafts and reliably humanizing chimeric mice with renewable cell sources such as patient-specific induced pluripotent stem cells. In conclusion, hepatocyte chimeric mice have evolved into vital preclinical models that address many limitations of traditional rodent models. Continued improvements may further expand their applications.
Publication History
Article published online:
12 September 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Strom SC, Jirtle RL, Jones RS. et al. Isolation, culture, and transplantation of human hepatocytes. J Natl Cancer Inst 1982; 68 (05) 771-778
- 2 Dandri M, Burda MR, Török E. et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 2001; 33 (04) 981-988
- 3 Mercer DF, Schiller DE, Elliott JF. et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med 2001; 7 (08) 927-933
- 4 Masemann D, Ludwig S, Boergeling Y. Advances in transgenic mouse models to study infections by human pathogenic viruses. Int J Mol Sci 2020; 21 (23) 9289
- 5 Nakagomi O, Ishida N. Establishment of a cell line from a human fetal liver and its xenotransplantation to nude mice. Gann 1980; 71 (02) 213-219
- 6 Hanawa-Shimizu M, Maéno M, Shikata T. Transplantation studies on human and duck hepatocytes in athymic nude mice. Liver 1991; 11 (04) 241-247
- 7 Soriano HE, Adams RM, Darlington G, Finegold M, Steffen DL, Ledley FD. Retroviral transduction of human hepatocytes and orthotopic engraftment in SCID mice after hepatocellular transplantation. Transplant Proc 1992; 24 (06) 3020-3021
- 8 Katoh M, Tateno C, Yoshizato K, Yokoi T. Chimeric mice with humanized liver. Toxicology 2008; 246 (01) 9-17
- 9 Mosier DE, Stell KL, Gulizia RJ, Torbett BE, Gilmore GL. Homozygous scid/scid;beige/beige mice have low levels of spontaneous or neonatal T cell-induced B cell generation. J Exp Med 1993; 177 (01) 191-194
- 10 Pearson T, Shultz LD, Miller D. et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 2008; 154 (02) 270-284
- 11 Takenaka K, Prasolava TK, Wang JC. et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 2007; 8 (12) 1313-1323
- 12 Yamauchi T, Takenaka K, Urata S. et al. Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood 2013; 121 (08) 1316-1325
- 13 Naugler WE, Tarlow BD, Fedorov LM. et al. Fibroblast growth factor signaling controls liver size in mice with humanized livers. Gastroenterology 2015; 149 (03) 728-40.e15
- 14 Hasegawa M, Kawai K, Mitsui T. et al. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun 2011; 405 (03) 405-410
- 15 Suemizu H, Hasegawa M, Kawai K. et al. Establishment of a humanized model of liver using NOD/Shi-scid IL2Rg null mice. Biochem Biophys Res Commun 2008; 377 (01) 248-252
- 16 Uehara S, Higuchi Y, Yoneda N. et al. An improved TK-NOG mouse as a novel platform for humanized liver that overcomes limitations in both male and female animals. Drug Metab Pharmacokinet 2022; 42: 100410
- 17 Strick-Marchand H, Dusséaux M, Darche S. et al. A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLoS One 2015; 10 (03) e0119820
- 18 Yasuda M, Ogura T, Goto T. et al. Incidence of spontaneous lymphomas in non-experimental NOD/Shi-scid, IL-2Rγnull (NOG) mice. Exp Anim 2017; 66 (04) 425-435
- 19 de Jong YP, Dorner M, Mommersteeg MC. et al. Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Sci Transl Med 2014; 6 (254) 254ra129
- 20 Ohshita H, Tateno C. Propagation of human hepatocytes in uPA/SCID mice: producing chimeric mice with humanized liver. Methods Mol Biol 2017; 1506: 91-100
- 21 Vanwolleghem T, Libbrecht L, Hansen BE. et al. Factors determining successful engraftment of hepatocytes and susceptibility to hepatitis B and C virus infection in uPA-SCID mice. J Hepatol 2010; 53 (03) 468-476
- 22 Overturf K, al-Dhalimy M, Ou CN, Finegold M, Grompe M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol 1997; 151 (05) 1273-1280
- 23 Cai J, Zhao Y, Liu Y. et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 2007; 45 (05) 1229-1239
- 24 Meuleman P, Libbrecht L, De Vos R. et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology 2005; 41 (04) 847-856
- 25 Tesfaye A, Stift J, Maric D, Cui Q, Dienes HP, Feinstone SM. Chimeric mouse model for the infection of hepatitis B and C viruses. PLoS One 2013; 8 (10) e77298
- 26 Tateno C, Kawase Y, Tobita Y. et al. Generation of novel chimeric mice with humanized livers by using hemizygous cDNA-uPA/SCID mice. PLoS One 2015; 10 (11) e0142145
- 27 Grompe M, al-Dhalimy M, Finegold M. et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 1993; 7 (12A): 2298-2307
- 28 Grompe M, Lindstedt S, al-Dhalimy M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 1995; 10 (04) 453-460
- 29 Azuma H, Paulk N, Ranade A. et al. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol 2007; 25 (08) 903-910
- 30 Bissig KD, Le TT, Woods NB, Verma IM. Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc Natl Acad Sci U S A 2007; 104 (51) 20507-20511
- 31 Bissig KD, Wieland SF, Tran P. et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest 2010; 120 (03) 924-930
- 32 Billerbeck E, Mommersteeg MC, Shlomai A. et al. Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells. J Hepatol 2016; 65 (02) 334-343
- 33 He Z, Zhang H, Zhang X. et al. Liver xeno-repopulation with human hepatocytes in Fah-/-Rag2-/- mice after pharmacological immunosuppression. Am J Pathol 2010; 177 (03) 1311-1319
- 34 Sari G, van Oord GW, van de Garde MDB, Voermans JJC, Boonstra A, Vanwolleghem T. Sexual dimorphism in hepatocyte xenograft models. Cell Transplant 2021; 30: 9636897211006132
- 35 Kosaka K, Hiraga N, Imamura M. et al. A novel TK-NOG based humanized mouse model for the study of HBV and HCV infections. Biochem Biophys Res Commun 2013; 441 (01) 230-235
- 36 Washburn ML, Bility MT, Zhang L. et al. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 2011; 140 (04) 1334-1344
- 37 Tang Q, Gernoux G, Cheng Y, Flotte T, Mueller C. Engraftment of human hepatocytes in the PiZ-NSG mouse model. Methods Mol Biol 2020; 2164: 75-85
- 38 Zhang RR, Zheng YW, Li B. et al. Human hepatic stem cells transplanted into a fulminant hepatic failure Alb-TRECK/SCID mouse model exhibit liver reconstitution and drug metabolism capabilities. Stem Cell Res Ther 2015; 6 (01) 49
- 39 Ren XN, Ren RR, Yang H. et al. Human liver chimeric mouse model based on diphtheria toxin-induced liver injury. World J Gastroenterol 2017; 23 (27) 4935-4941
- 40 Kawahara T, Toso C, Douglas DN. et al. Factors affecting hepatocyte isolation, engraftment, and replication in an in vivo model. Liver Transpl 2010; 16 (08) 974-982
- 41 Kabbani M, Michailidis E, Steensels S. et al. Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice. Cell Rep 2022; 40 (11) 111321
- 42 Kaffe E, Roulis M, Zhao J. et al; AlcHepNet. Humanized mouse liver reveals endothelial control of essential hepatic metabolic functions. Cell 2023; 186 (18) 3793-3809.e26
- 43 Aizarani N, Saviano A. Sagar, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 2019; 572 (7768) 199-204
- 44 Cabanes-Creus M, Navarro RG, Liao SHY. et al. Characterization of the humanized FRG mouse model and development of an AAV-LK03 variant with improved liver lobular biodistribution. Mol Ther Methods Clin Dev 2023; 28: 220-237
- 45 Jiang C, Li P, Ma Y. et al. Comprehensive gene profiling of the metabolic landscape of humanized livers in mice. J Hepatol 2024; 80 (04) 622-633
- 46 Foquet L, Wilson EM, Verhoye L. et al. Successful engraftment of human hepatocytes in uPA-SCID and FRG® KO mice. Methods Mol Biol 2017; 1506: 117-130
- 47 Brown JJ, Parashar B, Moshage H. et al. A long-term hepatitis B viremia model generated by transplanting nontumorigenic immortalized human hepatocytes in Rag-2-deficient mice. Hepatology 2000; 31 (01) 173-181
- 48 Ohashi K, Marion PL, Nakai H. et al. Sustained survival of human hepatocytes in mice: A model for in vivo infection with human hepatitis B and hepatitis delta viruses. Nat Med 2000; 6 (03) 327-331
- 49 Allweiss L, Dandri M. Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J Hepatol 2016; 64 (1, Suppl): S17-S31
- 50 Vercauteren K, de Jong YP, Meuleman P. Animal models for the study of HCV. Curr Opin Virol 2015; 13: 67-74
- 51 Giersch K, Dandri M. In vivo models of HDV infection: Is humanizing NTCP enough?. Viruses 2021; 13 (04) 588
- 52 Hirai-Yuki A, Whitmire JK, Joyce M, Tyrrell DL, Lemon SM. Murine models of hepatitis A virus infection. Cold Spring Harb Perspect Med 2019; 9 (01) a031674
- 53 Sayed IM, Meuleman P. Updates in hepatitis E virus (HEV) field; lessons learned from human liver chimeric mice. Rev Med Virol Mar 2020; 30 (02) e2086
- 54 Bailey AL, Kang LI, de Assis Barros D'Elia Zanella LGF. et al. Consumptive coagulopathy of severe yellow fever occurs independently of hepatocellular tropism and massive hepatic injury. Proc Natl Acad Sci U S A 2020; 117 (51) 32648-32656
- 55 De Niz M, Heussler VT. Rodent malaria models: insights into human disease and parasite biology. Curr Opin Microbiol 2018; 46: 93-101
- 56 Billerbeck E, Wolfisberg R, Fahnøe U. et al. Mouse models of acute and chronic hepacivirus infection. Science 2017; 357 (6347) 204-208
- 57 Sacci Jr JB, Alam U, Douglas D. et al. Plasmodium falciparum infection and exoerythrocytic development in mice with chimeric human livers. Int J Parasitol 2006; 36 (03) 353-360
- 58 Vaughan AM, Mikolajczak SA, Wilson EM. et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J Clin Invest 2012; 122 (10) 3618-3628
- 59 Soulard V, Bosson-Vanga H, Lorthiois A. et al. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice. Nat Commun 2015; 6: 7690
- 60 Mikolajczak SA, Vaughan AM, Kangwanrangsan N. et al. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe 2015; 17 (04) 526-535
- 61 Schäfer C, Roobsoong W, Kangwanrangsan N. et al. A humanized mouse model for Plasmodium vivax to test interventions that block liver stage to blood stage transition and blood stage infection. iScience 2020; 23 (08) 101381
- 62 Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2006; 2 (06) 875-894
- 63 Stevens JL, Baker TK. The future of drug safety testing: expanding the view and narrowing the focus. Drug Discov Today 2009; 14 (3-4): 162-167
- 64 Katoh M, Watanabe M, Tabata T. et al. In vivo induction of human cytochrome P450 3A4 by rifabutin in chimeric mice with humanized liver. Xenobiotica 2005; 35 (09) 863-875
- 65 Katoh M, Matsui T, Nakajima M. et al. In vivo induction of human cytochrome P450 enzymes expressed in chimeric mice with humanized liver. Drug Metab Dispos 2005; 33 (06) 754-763
- 66 Tateno C, Yoshizane Y, Saito N. et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol 2004; 165 (03) 901-912
- 67 Katoh M, Matsui T, Nakajima M. et al. Expression of human cytochromes P450 in chimeric mice with humanized liver. Drug Metab Dispos 2004; 32 (12) 1402-1410
- 68 Okumura H, Katoh M, Sawada T. et al. Humanization of excretory pathway in chimeric mice with humanized liver. Toxicol Sci 2007; 97 (02) 533-538
- 69 Lootens L, Van Eenoo P, Meuleman P, Leroux-Roels G, Delbeke FT. The uPA(+/+)-SCID mouse with humanized liver as a model for in vivo metabolism of 4-androstene-3,17-dione. Drug Metab Dispos 2009; 37 (12) 2367-2374
- 70 Nishimura T, Hu Y, Wu M. et al. Using chimeric mice with humanized livers to predict human drug metabolism and a drug-drug interaction. J Pharmacol Exp Ther 2013; 344 (02) 388-396
- 71 Hu Y, Wu M, Nishimura T, Zheng M, Peltz G. Human pharmacogenetic analysis in chimeric mice with ‘humanized livers’. Pharmacogenet Genomics 2013; 23 (02) 78-83
- 72 De Brabanter N, Esposito S, Tudela E. et al. In vivo and in vitro metabolism of the synthetic cannabinoid JWH-200. Rapid Commun Mass Spectrom 2013; 27 (18) 2115-2126
- 73 Kikuchi R, McCown M, Olson P. et al. Effect of hepatitis C virus infection on the mRNA expression of drug transporters and cytochrome p450 enzymes in chimeric mice with humanized liver. Drug Metab Dispos 2010; 38 (11) 1954-1961
- 74 Vanwolleghem T, Meuleman P, Libbrecht L, Roskams T, De Vos R, Leroux-Roels G. Ultra-rapid cardiotoxicity of the hepatitis C virus protease inhibitor BILN 2061 in the urokinase-type plasminogen activator mouse. Gastroenterology 2007; 133 (04) 1144-1155
- 75 Uehara S, Iida Y, Ida-Tanaka M. et al. Humanized liver TK-NOG mice with functional deletion of hepatic murine cytochrome P450s as a model for studying human drug metabolism. Sci Rep 2022; 12 (01) 14907
- 76 Vonada A, Wakefield L, Martinez M, Harding CO, Grompe M, Tiyaboonchai A. Complete correction of murine phenylketonuria by selection-enhanced hepatocyte transplantation. Hepatology 2024; 79 (05) 1088-1097
- 77 Lisowski L, Dane AP, Chu K. et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 2014; 506 (7488) 382-386
- 78 George LA, Monahan PE, Eyster ME. et al. Multiyear factor VIII expression after AAV gene transfer for hemophilia A. N Engl J Med 2021; 385 (21) 1961-1973
- 79 Paulk NK, Pekrun K, Zhu E. et al. Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity. Mol Ther 2018; 26 (01) 289-303
- 80 Pekrun K, De Alencastro G, Luo QJ. et al. Using a barcoded AAV capsid library to select for clinically relevant gene therapy vectors. JCI Insight 2019; 4 (22) e131610
- 81 Shao W, Pei X, Cui C. et al. Superior human hepatocyte transduction with adeno-associated virus vector serotype 7. Gene Ther 2019; 26 (12) 504-514
- 82 Wang L, Bell P, Somanathan S. et al. Comparative study of liver gene transfer with AAV vectors based on natural and engineered AAV capsids. Mol Ther 2015; 23 (12) 1877-1887
- 83 Rana J, Marsic D, Zou C. et al. Characterization of a bioengineered AAV3B capsid variant with enhanced hepatocyte tropism and immune evasion. Hum Gene Ther 2023; 34 (7-8): 289-302
- 84 Vercauteren K, Hoffman BE, Zolotukhin I. et al. Superior in vivo transduction of human hepatocytes using engineered AAV3 capsid. Mol Ther 2016; 24 (06) 1042-1049
- 85 Bissig-Choisat B, Wang L, Legras X. et al. Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model. Nat Commun 2015; 6: 7339
- 86 Meumann N, Cabanes-Creus M, Ertelt M. et al. Adeno-associated virus serotype 2 capsid variants for improved liver-directed gene therapy. Hepatology 2023; 77 (03) 802-815
- 87 Barzi M, Chen T, Gonzalez TJ. et al. A humanized mouse model for adeno-associated viral gene therapy. Nat Commun 2024; 15 (01) 1955
- 88 Wang X, Raghavan A, Chen T. et al. CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo-brief report. Arterioscler Thromb Vasc Biol 2016; 36 (05) 783-786
- 89 Stone D, Long KR, Loprieno MA. et al. CRISPR-Cas9 gene editing of hepatitis B virus in chronically infected humanized mice. Mol Ther Methods Clin Dev 2020; 20: 258-275
- 90 Hatit MZC, Lokugamage MP, Dobrowolski CN. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat Nanotechnol 2022; 17 (03) 310-318
- 91 Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 2023; 77 (04) 1335-1347
- 92 Åberg F, Jiang ZG, Cortez-Pinto H, Männistö V. Alcohol-associated liver disease-Global epidemiology. Hepatology 2024;
- 93 Rinella ME, Lazarus JV, Ratziu V. et al; NAFLD Nomenclature Consensus Group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol 2023; 79 (06) 1542-1556
- 94 Farrell G, Schattenberg JM, Leclercq I. et al. Mouse models of nonalcoholic steatohepatitis: toward optimization of their relevance to human nonalcoholic steatohepatitis. Hepatology 2019; 69 (05) 2241-2257
- 95 Vacca M, Kamzolas I, Harder LM. et al; LITMUS Investigators. An unbiased ranking of murine dietary models based on their proximity to human metabolic dysfunction-associated steatotic liver disease (MASLD). Nat Metab 2024; 6 (06) 1178-1196
- 96 Tateno C, Kataoka M, Utoh R. et al. Growth hormone-dependent pathogenesis of human hepatic steatosis in a novel mouse model bearing a human hepatocyte-repopulated liver. Endocrinology 2011; 152 (04) 1479-1491
- 97 Saxena R, Nassiri M, Yin XM, Morral N. Insights from a high-fat diet fed mouse model with a humanized liver. PLoS One 2022; 17 (05) e0268260
- 98 Ichikawa A, Miki D, Hayes CN. et al. Multi-omics analysis of a fatty liver model using human hepatocyte chimeric mice. Sci Rep 2024; 14 (01) 3362
- 99 Wang X, Moore MP, Shi H. et al. Hepatocyte-targeted siTAZ therapy lowers liver fibrosis in NASH diet-fed chimeric mice with hepatocyte-humanized livers. Mol Ther Methods Clin Dev 2023; 31: 101165
- 100 Carbonaro M, Wang K, Huang H. et al. IL-6-GP130 signaling protects human hepatocytes against lipid droplet accumulation in humanized liver models. Sci Adv 2023; 9 (15) eadf4490
- 101 Bissig-Choisat B, Alves-Bezerra M, Zorman B. et al. A human liver chimeric mouse model for non-alcoholic fatty liver disease. JHEP Rep Innov Hepatol 2021; 3 (03) 100281
- 102 Luukkonen PK, Sädevirta S, Zhou Y. et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 2018; 41 (08) 1732-1739
- 103 Ma J, Tan X, Kwon Y. et al. A novel humanized model of NASH and its treatment with META4, a potent agonist of MET. Cell Mol Gastroenterol Hepatol 2022; 13 (02) 565-582
- 104 Romeo S, Kozlitina J, Xing C. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40 (12) 1461-1465
- 105 Ellis EC, Naugler WE, Parini P. et al. Mice with chimeric livers are an improved model for human lipoprotein metabolism. PLoS One 2013; 8 (11) e78550
- 106 Sari G, Meester EJ, van der Zee LC. et al. A mouse model of humanized liver shows a human-like lipid profile, but does not form atherosclerotic plaque after western type diet. Biochem Biophys Res Commun 2020; 524 (02) 510-515
- 107 Minniti ME, Pedrelli M, Vedin LL. et al. Insights from liver-humanized mice on cholesterol lipoprotein metabolism and LXR-agonist pharmacodynamics in humans. Hepatology 2020; 72 (02) 656-670
- 108 Papazyan R, Liu X, Liu J. et al. FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver. J Lipid Res 2018; 59 (06) 982-993
- 109 Andreo U, de Jong YP, Scull MA. et al. Analysis of hepatitis C virus particle heterogeneity in immunodeficient human liver chimeric fah-/- mice. Cell Mol Gastroenterol Hepatol 2017; 4 (03) 405-417
- 110 Chow EC, Quach HP, Zhang Y. et al. Disrupted murine gut-to-human liver signaling alters bile acid homeostasis in humanized mouse liver models. J Pharmacol Exp Ther 2017; 360 (01) 174-191
- 111 Mezler M, Jones RS, Sangaraju D. et al. Analysis of the bile acid composition in a fibroblast growth factor 19-expressing liver-humanized mouse model and its use for CYP3A4-mediated drug-drug interaction studies. Drug Metab Dispos 2023; 51 (10) 1391-1402
- 112 Shultz LD, Keck J, Burzenski L. et al. Humanized mouse models of immunological diseases and precision medicine. Mamm Genome 2019; 30 (5-6): 123-142
- 113 Ito M, Kobayashi K, Nakahata T. NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol 2008; 324: 53-76
- 114 Gutti TL, Knibbe JS, Makarov E. et al. Human hepatocytes and hematolymphoid dual reconstitution in treosulfan-conditioned uPA-NOG mice. Am J Pathol 2014; 184 (01) 101-109
- 115 Wilson EM, Bial J, Tarlow B. et al. Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res 2014; 13 (3, Pt A): 404-412
- 116 Song Y, Shan L, Gbyli R. et al. Combined liver-cytokine humanization comes to the rescue of circulating human red blood cells. Science 2021; 371 (6533) 1019-1025
- 117 Sampaziotis F, Muraro D, Tysoe OC. et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 2021; 371 (6531) 839-846
- 118 Fomin ME, Zhou Y, Beyer AI, Publicover J, Baron JL, Muench MO. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice. PLoS One 2013; 8 (10) e77255
- 119 Fomin ME, Beyer AI, Muench MO. Human fetal liver cultures support multiple cell lineages that can engraft immunodeficient mice. Open Biol 2017; 7 (12) 170108
- 120 Yap KK, Schröder J, Gerrand YW. et al. Liver specification of human iPSC-derived endothelial cells transplanted into mouse liver. JHEP Rep Innov Hepatol 2024; 6 (05) 101023
- 121 Lim SG, Baumert TF, Boni C. et al. The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 2023; 20 (04) 238-253
- 122 Maini MK, Burton AR. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat Rev Gastroenterol Hepatol 2019; 16 (11) 662-675
- 123 Bility MT, Cheng L, Zhang Z. et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog 2014; 10 (03) e1004032
- 124 Dusséaux M, Masse-Ranson G, Darche S. et al. Viral load affects the immune response to HBV in mice with humanized immune system and liver. Gastroenterology 2017; 153 (06) 1647-1661.e9
- 125 Christen U, Hintermann E. Animal models for autoimmune hepatitis: Are current models good enough?. Front Immunol 2022; 13: 898615
- 126 Chuprin J, Buettner H, Seedhom MO. et al. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20 (03) 192-206
- 127 Bierwolf J, Volz T, Lütgehetmann M. et al. Primary human hepatocytes repopulate livers of mice after in vitro culturing and lentiviral-mediated gene transfer. Tissue Eng Part A 2016; 22 (9-10): 742-753
- 128 Michailidis E, Vercauteren K, Mancio-Silva L. et al. Expansion, in vivo-ex vivo cycling, and genetic manipulation of primary human hepatocytes. Proc Natl Acad Sci U S A 2020; 117 (03) 1678-1688
- 129 Musunuru K, Chadwick AC, Mizoguchi T. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021; 593 (7859) 429-434
- 130 Zabulica M, Srinivasan RC, Akcakaya P. et al. Correction of a urea cycle defect after ex vivo gene editing of human hepatocytes. Mol Ther 2021; 29 (05) 1903-1917
- 131 Duncan AW, Hanlon Newell AE, Smith L. et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 2012; 142 (01) 25-28
- 132 Hu H, Gehart H, Artegiani B. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 2018; 175 (06) 1591-1606.e19
- 133 Si-Tayeb K, Noto FK, Nagaoka M. et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010; 51 (01) 297-305
- 134 Xu D, Nishimura T, Zheng M. et al. Enabling autologous human liver regeneration with differentiated adipocyte stem cells. Cell Transplant 2014; 23 (12) 1573-1584
- 135 Zhu S, Rezvani M, Harbell J. et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature 2014; 508 (7494) 93-97
- 136 Huang P, Zhang L, Gao Y. et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 2014; 14 (03) 370-384
- 137 Du Y, Wang J, Jia J. et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell 2014; 14 (03) 394-403
- 138 Yusa K, Rashid ST, Strick-Marchand H. et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 2011; 478 (7369) 391-394
- 139 Carpentier A, Tesfaye A, Chu V. et al. Engrafted human stem cell-derived hepatocytes establish an infectious HCV murine model. J Clin Invest 2014; 124 (11) 4953-4964
- 140 Saito Y, Ikemoto T, Morine Y, Shimada M. Current status of hepatocyte-like cell therapy from stem cells. Surg Today 2021; 51 (03) 340-349
- 141 Luce E, Messina A, Duclos-Vallée JC, Dubart-Kupperschmitt A. Advanced techniques and awaited clinical applications for human pluripotent stem cell differentiation into hepatocytes. Hepatology 2021; 74 (02) 1101-1116
- 142 Chen C, Soto-Gutierrez A, Baptista PM, Spee B. Biotechnology challenges to in vitro maturation of hepatic stem cells. Gastroenterology 2018; 154 (05) 1258-1272
- 143 Iansante V, Mitry RR, Filippi C, Fitzpatrick E, Dhawan A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res 2018; 83 (1-2): 232-240