CC BY 4.0 · Arq Neuropsiquiatr 2024; 82(10): s00441791518
DOI: 10.1055/s-0044-1791518
Original Article

Absolute beta power in exercisers and nonexercisers in preparation for the oddball task

Potência absoluta de beta em praticantes e não praticantes de exercício físico na preparação da tarefa oddball
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
3   Universidade Federal Fluminense, Hospital Universitário Antônio Pedro, Niterói RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
4   Universidade Federal do Piauí, Departamento de Fisioterapia, Teresina PI, Brazil.
,
5   Medical School Hamburg, Faculty of Human Sciences, Hamburg, Germany.
6   Reykjavik University, Department of Sport Science, Reykjavik, Iceland.
,
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
7   Universidade Federal do Rio de Janeiro, Departamento de Engenharia Biomédica, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
,
1   Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil.
› Institutsangaben

Abstract

Background High levels of physical conditioning are associated with improvements in cognitive performance. In this sense, electroencephalographic (ECG) correlates are used to investigate the enhancing role of physical exercise on executive functions. Oscillations in the β frequency range are proposed to be evident during sensorimotor activity.

Objective To investigate the ECG changes influenced by aerobic and resistance exercises performed in an attention task by analyzing the differences in absolute β power in the prefrontal and frontal regions before, during, and after the oddball paradigm in practitioners and nonpractitioners of physical exercise.

Methods There were 15 physical activity practitioners (aged 27 ± 4.71) and 15 nonpractitioners (age 28 ± 1.50) recruited. A two-way analysis of variance (ANOVA) was implemented to observe the main effect and the interaction between groups and moments (rest 1, pre-stimulus, and rest 2).

Results An interaction between group and moment factors was observed for Fp1 (p < 0.001); Fp2 (p = 0.001); F7 (p < 0.001); F8 (p < 0.001); F3 (p < 0.001); Fz (p < 0.001); and F4 (p < 0.001). Electrophysiological findings clarified exercisers' specificity and neural efficiency in each prefrontal and frontal subarea.

Conclusion Our findings lend support to the current understanding of the cognitive processes underlying physical exercise and provide new evidence on the relationship between exercise and cortical activity.

Resumo

Antecedentes Níveis elevados de condicionamento físico estão associados a melhorias no desempenho cognitivo. Nesse sentido, correlatos eletroencefalográficos são utilizados na investigação do papel aprimorador do exercício físico sobre as funções executivas. Tem sido proposto que as oscilações na faixa de frequência β são evidenciadas durante a atividade sensório-motora.

Objetivo Investigar as alterações eletroencefalográficas influenciadas por exercícios aeróbio e resistido realizados em uma tarefa atencional analisando as diferenças da potência absoluta de β nas regiões pré-frontal e frontal antes, na preparação e depois do paradigma oddball em praticantes e não praticantes de exercício físico.

Métodos Foram recrutados 15 praticantes de atividade física (idade 27 ± 4.71) e 15 não praticantes (idade 28 ± 1.50). Uma análise de variância (ANOVA) de duas vias foi implementada para observação do efeito principal e a interação entre os grupos e os momentos (repouso 1, pré-estímulo e repouso 2).

Resultados Uma interação entre os fatores grupo e momento para Fp1 (p < 0,001); Fp2 (p = 0,001); F7 (p < 0,001); F8 (p < 0,001); F3 (p < 0,001); Fz (p < 0,001); e F4 (p < 0,001) foi observada. Os achados eletrofisiológicos esclareceram a especificidade e a eficiência neural dos praticantes de exercício físico em cada subárea pré-frontal e frontal.

Conclusão Nossos achados promovem o entendimento atual dos processos cognitivos subjacentes ao exercício físico e acrescentam novas evidências sobre a relação exercício e atividade cortical.

Authors' Contributions

MM: formal analysis, visualization, and writing – original draft; RF, GZ, CA: validation; AV: writing – review & editing; EC: validation; EN: conceptualization, formal analysis, visualization, and writing – original draft; MG, MO: validation; RV: data curation, investigation, validation, writing – original draft, and writing – review & editing; ST, HB: validation; MC: formal analysis, methodology, software, and supervision; BV: conceptualization, methodology, project administration, and supervision; PR: conceptualization, formal analysis, methodology, project administration, supervision, visualization, and writing – review & editing.


Editor-in-Chief: Hélio A. G. Teive.


Associate Editor: Luciano De Paola.




Publikationsverlauf

Eingereicht: 16. Februar 2024

Angenommen: 19. Juli 2024

Artikel online veröffentlicht:
02. Oktober 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

Bibliographical Record
Marcos Machado, Renato Fonseca, Giovanna Zanchetta, Carlos Amoroso, Alexandre Vasconcelos, Élida Costa, Eduardo Nicoliche, Mariana Gongora, Marco Orsini, Renan Vicente, Silmar Teixeira, Henning Budde, Mauricio Cagy, Bruna Velasques, Pedro Ribeiro. Absolute beta power in exercisers and nonexercisers in preparation for the oddball task. Arq Neuropsiquiatr 2024; 82: s00441791518.
DOI: 10.1055/s-0044-1791518
 
  • References

  • 1 Schneider S, Brümmer V, Abel T, Askew CD, Strüder HK. Changes in brain cortical activity measured by EEG are related to individual exercise preferences. Physiol Behav 2009; 98 (04) 447-452
  • 2 Ciria LF, Luque-Casado A, Sanabria D, Holgado D, Ivanov PC, Perakakis P. Oscillatory brain activity during acute exercise: Tonic and transient neural response to an oddball task. Psychophysiology 2019; 56 (05) e13326
  • 3 Lardon MT, Polich J. EEG changes from long-term physical exercise. Biol Psychol 1996; 44 (01) 19-30
  • 4 Berchicci M, Pontifex MB, Drollette ES, Pesce C, Hillman CH, Di Russo F. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health. Neuroscience 2015; 298: 211-219
  • 5 Chow Z-S, Moreland AT, Macpherson H, Teo WP. The Central Mechanisms of Resistance Training and Its Effects on Cognitive Function. Sports Med 2021; 51 (12) 2483-2506
  • 6 Brockett AT, LaMarca EA, Gould E. Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. PLoS One 2015; 10 (05) e0124859
  • 7 Luque-Casado A, Ciria LF, Sanabria D, Perakakis P. Exercise practice associates with different brain rhythmic patterns during vigilance. Physiol Behav 2020; 224: 113033
  • 8 Fujiwara H, Tsurumi K, Shibata M. et al. Life Habits and Mental Health: Behavioural Addiction, Health Benefits of Daily Habits, and the Reward System. Front Psychiatry 2022; 13: 813507 Doi: 10.3389%2Ffpsyt.2022.813507
  • 9 España-Irla G, Gomes-Osman J, Cattaneo G. et al. Associations Between Cardiorespiratory Fitness, Cardiovascular Risk, and Cognition Are Mediated by Structural Brain Health in Midlife. J Am Heart Assoc 2021; 10 (18) e020688
  • 10 Cheron G, Petit G, Cheron J. et al. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance. Front Psychol 2016; 7: 246
  • 11 Boere K, Lloyd K, Binsted G, Krigolson OE. Exercising is good for the brain but exercising outside is potentially better. Sci Rep 2023; 13 (01) 1140
  • 12 Vonk M, Wikkerink S, Regan K, Middleton LE. Similar changes in executive function after moderate resistance training and loadless movement. PLoS One 2019; 14 (02) e0212122
  • 13 Pontifex MB, Parks AC, Henning DA, Kamijo K. Single bouts of exercise selectively sustain attentional processes. Psychophysiology 2015; 52 (05) 618-625
  • 14 Herold F, Törpel A, Schega L, Müller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. Eur Rev Aging Phys Act 2019; 16: 10
  • 15 Liu-Ambrose T, Nagamatsu LS, Voss MW, Khan KM, Handy TC. Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiol Aging 2012; 33 (08) 1690-1698
  • 16 Du Rietz E, Barker AR, Michelini G. et al. Beneficial effects of acute high-intensity exercise on electrophysiological indices of attention processes in young adult men. Behav Brain Res 2019; 359: 474-484 Doi: 10.1016%2Fj.bbr.2018.11.024
  • 17 Fang Q, Fang C, Li L, Song Y. Impact of sport training on adaptations in neural functioning and behavioral performance: A scoping review with meta-analysis on EEG research. J Exerc Sci Fit 2022; 20 (03) 206-215
  • 18 Di Muccio F, Ruggeri P, Brandner C, Barral J. Electrocortical correlates of the association between cardiorespiratory fitness and sustained attention in young adults. Neuropsychologia 2022; 172: 108271
  • 19 Chaire A, Becke A, Düzel E. Effects of Physical Exercise on Working Memory and Attention-Related Neural Oscillations. Front Neurosci 2020; 14: 239
  • 20 John AT, Wind J, Horst F, Schöllhorn WI. Acute Effects of an Incremental Exercise Test on Psychophysiological Variables and Their Interaction. J Sports Sci Med 2020; 19 (03) 596-612
  • 21 Engel AK, Fries P. Beta-band oscillations–signalling the status quo?. Curr Opin Neurobiol 2010; 20 (02) 156-165
  • 22 Lee SM, Choi M, Chun B-O. et al. Effects of a High-Intensity Interval Physical Exercise Program on Cognition, Physical Performance, and Electroencephalogram Patterns in Korean Elderly People: A Pilot Study. Dement Neurocognitive Disord 2022; 21 (03) 93-102
  • 23 Lin M-A, Meng L-F, Ouyang Y. et al. Resistance-induced brain activity changes during cycle ergometer exercises. BMC Sports Sci Med Rehabil 2021; 13 (01) 27 Doi: 10.1186%2Fs13102-021-00252-w
  • 24 Dal Maso F, Desormeau B, Boudrias M-H, Roig M. Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation. Neuroimage 2018; 174: 380-392
  • 25 Zaepffel M, Trachel R, Kilavik BE, Brochier T. Modulations of EEG beta power during planning and execution of grasping movements. PLoS One 2013; 8 (03) e60060
  • 26 Brümmer V, Schneider S, Abel T, Vogt T, Strüder HK. Brain cortical activity is influenced by exercise mode and intensity. Med Sci Sports Exerc 2011; 43 (10) 1863-1872
  • 27 Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971; 9 (01) 97-113
  • 28 Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol 1975; 38 (04) 387-401
  • 29 Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 2009; 41 (01) 3-13
  • 30 Fayers PM, Machin D. Sample size: how many patients are necessary?. Br J Cancer 1995; 72 (01) 1-9
  • 31 Pedroso RV, Lima-Silva AE, Tarachuque PE, Fraga FJ, Stein AM. Efficacy of Physical Exercise on Cortical Activity Modulation in Mild Cognitive Impairment: A Systematic Review. Arch Phys Med Rehabil 2021; 102 (12) 2393-2401
  • 32 Chiang T-C, Liang K-C, Chen J-H, Hsieh CH, Huang YA. Brain deactivation in the outperformance in bimodal tasks: an FMRI study. PLoS One 2013; 8 (10) e77408 Doi: 10.1371%2Fjournal.pone.0077408
  • 33 Domic-Siede M, Irani M, Valdés J, Perrone-Bertolotti M, Ossandón T. Theta activity from frontopolar cortex, mid-cingulate cortex and anterior cingulate cortex shows different roles in cognitive planning performance. Neuroimage 2021; 226: 117557
  • 34 Montuori S, D'Aurizio G, Foti F. et al. Executive functioning profiles in elite volleyball athletes: Preliminary results by a sport-specific task switching protocol. Hum Mov Sci 2019; 63: 73-81
  • 35 da Silva K, Curvina M, Araújo S. et al. Male practitioners of physical activity present lower absolute power of beta band in time perception test. Neurosci Lett 2021; 764: 136210
  • 36 Chen F-T, Etnier JL, Chan K-H, Chiu PK, Hung TM, Chang YK. Effects of Exercise Training Interventions on Executive Function in Older Adults: A Systematic Review and Meta-Analysis. Sports Med 2020; 50 (08) 1451-1467
  • 37 Ceyte H, Lion A, Caudron S, Perrin P, Gauchard GC. Visuo-oculomotor skills related to the visual demands of sporting environments. Exp Brain Res 2017; 235 (01) 269-277
  • 38 Schneiders JA, Opitz B, Tang H. et al. The impact of auditory working memory training on the fronto-parietal working memory network. Front Hum Neurosci 2012; 6: 173 Doi: 10.3389%2Ffnhum.2012.00173
  • 39 Yamasaki H, LaBar KS, McCarthy G. Dissociable prefrontal brain systems for attention and emotion. Proc Natl Acad Sci U S A 2002; 99 (17) 11447-11451
  • 40 Binkofski F, Buccino G. The role of ventral premotor cortex in action execution and action understanding. J Physiol Paris 2006; 99 (4-6): 396-405
  • 41 Christophel TB. Distributed Visual Working Memory Stores Revealed by Multivariate Pattern Analyses. J Vis 2015; 15: 1407
  • 42 Ives-Deliperi VL, Butler JT. Relationship Between EEG Electrode and Functional Cortex in the International 10 to 20 System. J Clin Neurophysiol 2018; 35 (06) 504-509
  • 43 Callow DD, Pena GS, Stark CEL. et al. Effects of acute aerobic exercise on mnemonic discrimination performance in older adults. J Int Neuropsychol Soc 2023; 29 (06) 519-528
  • 44 Lim KH-L, Pysklywec A, Plante M, Demers L. The effectiveness of Tai Chi for short-term cognitive function improvement in the early stages of dementia in the elderly: a systematic literature review. Clin Interv Aging 2019; 14: 827-839
  • 45 Lanzilotto M, Perciavalle V, Lucchetti C. A new field in monkey's frontal cortex: premotor ear-eye field (PEEF). Neurosci Biobehav Rev 2013; 37 (08) 1434-1444
  • 46 Chuang L-Y, Huang C-J, Hung T-M. The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. Int J Psychophysiol 2013; 90 (03) 321-328
  • 47 Velasques B, Bittencourt J, Diniz C. et al. Changes in saccadic eye movement (SEM) and quantitative EEG parameter in bipolar patients. J Affect Disord 2013; 145 (03) 378-385
  • 48 Nakano H, Osumi M, Ueta K, Kodama T, Morioka S. Changes in electroencephalographic activity during observation, preparation, and execution of a motor learning task. Int J Neurosci 2013; 123 (12) 866-875
  • 49 Studer B, Koeneke S, Blum J, Jäncke L. The effects of practice distribution upon the regional oscillatory activity in visuomotor learning. Behav Brain Funct 2010; 6: 8
  • 50 Bayazit O, Üngür G. Neuroelectric responses of sportsmen and sedentaries under cognitive stress. Cogn Neurodyn 2018; 12 (03) 295-301 Doi: 10.1007%2Fs11571-018-9478-0
  • 51 Wollenberg L, Hanning NM, Deubel H. Visual attention and eye movement control during oculomotor competition. J Vis 2020; 20 (09) 16 Doi: 10.1167%2Fjov.20.9.16
  • 52 Wang C-H, Liang W-K, Tseng P, Muggleton NG, Juan CH, Tsai CL. The relationship between aerobic fitness and neural oscillations during visuo-spatial attention in young adults. Exp Brain Res 2015; 233 (04) 1069-1078