Subscribe to RSS
DOI: 10.1055/s-0044-1791541
Advances in Small-Molecule C-KIT/PDGFRα Inhibitors for the Treatment of Gastrointestinal Stromal Tumors
Funding This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 82273763 and 82103968), the International Cooperation Project of Guangdong Science and Technology Program (Grant No. 2022A0505050045), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B515130008), the Open Project of State Key Laboratory of Respiratory Disease (Grant No. SKLRD-OP-202313), and Wang Kuancheng Young Scholar of Jinan University and the High-Performance Public Computing Service Platform of Jinan University.Abstract
Stem cell factor receptor (C-KIT) or platelet-derived growth factor receptor α (PDGFRα) gene mutations have been identified as oncogenic drivers for most gastrointestinal stromal tumors (GISTs). Thus, small-molecule inhibitors of C-KIT or PDGFRα have emerged as effective treatments for GISTs. Although the currently approved first- to fourth-line drugs are initially effective against GISTs, the inevitable development of drug resistance remains an unmet challenge. To address secondary mutations leading to drug resistance, several novel selective C-KIT/PDGFRα small-molecule inhibitors have been developed and clinically studied. This review summarizes the pathogenesis, treatment, and drug resistance mechanisms of GISTs and briefly describes current challenges and future efforts for GIST treatment using small-molecule kinase inhibitors.
# These authors contributed equally to this work.
Publication History
Received: 28 October 2023
Accepted: 06 September 2024
Article published online:
17 October 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Duensing A, Heinrich MC, Fletcher CD, Fletcher JA. Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer Invest 2004; 22 (01) 106-116
- 2 Vincenzi B, Nannini M, Fumagalli E. et al. Imatinib dose escalation versus sunitinib as a second line treatment in KIT exon 11 mutated GIST: a retrospective analysis. Oncotarget 2016; 7 (43) 69412-69419
- 3 Hirota S, Isozaki K, Moriyama Y. et al. Gain-of-function mutations of C-KIT in human gastrointestinal stromal tumors. Science 1998; 279 (5350): 577-580
- 4 Heinrich MC, Corless CL, Duensing A. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003; 299 (5607): 708-710
- 5 Zheng Y, Zheng X, Li S. et al. Identification of key genes and pathways in regulating immune–induced diseases of dendritic cells by bioinformatic analysis. Mol Med Rep 2018; 17 (06) 7585-7594
- 6 Gajiwala KS, Wu JC, Christensen J. et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci U S A 2009; 106 (05) 1542-1547
- 7 Heldin CH, Lennartsson J, Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med 2018; 283 (01) 16-44
- 8 Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298 (5600): 1912-1934
- 9 Nocka K, Buck J, Levi E, Besmer P. Candidate ligand for the C-KIT transmembrane kinase receptor: KL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors. EMBO J 1990; 9 (10) 3287-3294
- 10 Mol CD, Lim KB, Sridhar V. et al. Structure of a C-KIT product complex reveals the basis for kinase transactivation. J Biol Chem 2003; 278 (34) 31461-31464
- 11 Klug LR, Kent JD, Heinrich MC. Structural and clinical consequences of activation loop mutations in class III receptor tyrosine kinases. Pharmacol Ther 2018; 191: 123-134
- 12 von Mehren M, Joensuu H. Gastrointestinal stromal tumors. J Clin Oncol 2018; 36 (02) 136-143
- 13 Dibb NJ, Dilworth SM, Mol CD. Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nat Rev Cancer 2004; 4 (09) 718-727
- 14 Duensing A, Medeiros F, McConarty B. et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene 2004; 23 (22) 3999-4006
- 15 Blanke CD, Rankin C, Demetri GD. et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol 2008; 26 (04) 626-632
- 16 Antonescu CR, Besmer P, Guo T. et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 2005; 11 (11) 4182-4190
- 17 Chen LL, Trent JC, Wu EF. et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res 2004; 64 (17) 5913-5919
- 18 Tamborini E, Pricl S, Negri T. et al. Functional analyses and molecular modeling of two C-KIT mutations responsible for imatinib secondary resistance in GIST patients. Oncogene 2006; 25 (45) 6140-6146
- 19 Wardelmann E, Thomas N, Merkelbach-Bruse S. et al. Acquired resistance to imatinib in gastrointestinal stromal tumours caused by multiple KIT mutations. Lancet Oncol 2005; 6 (04) 249-251
- 20 Prenen H, Cools J, Mentens N. et al. Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin Cancer Res 2006; 12 (08) 2622-2627
- 21 Garner AP, Gozgit JM, Anjum R. et al. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin Cancer Res 2014; 20 (22) 5745-5755
- 22 Reichardt P, Demetri GD, Gelderblom H. et al. Correlation of KIT and PDGFRA mutational status with clinical benefit in patients with gastrointestinal stromal tumor treated with sunitinib in a worldwide treatment-use trial. BMC Cancer 2016; 16: 22
- 23 Demetri GD, van Oosterom AT, Garrett CR. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 2006; 368 (9544): 1329-1338
- 24 Demetri GD, Reichardt P, Kang YK. et al; GRID study investigators. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013; 381 (9863): 295-302
- 25 Grothey A, George S, van Cutsem E, Blay JY, Sobrero A, Demetri GD. Optimizing treatment outcomes with regorafenib: personalized dosing and other strategies to support patient care. Oncologist 2014; 19 (06) 669-680
- 26 Smith BD, Kaufman MD, Lu WP. et al. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell 2019; 35 (05) 738-751.e9
- 27 Blay JY, Serrano C, Heinrich MC. et al. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2020; 21 (07) 923-934
- 28 Mühlenberg T, Ketzer J, Heinrich MC. et al. KIT-dependent and KIT-independent genomic heterogeneity of resistance in gastrointestinal stromal tumors - TORC1/2 inhibition as salvage strategy. Mol Cancer Ther 2019; 18 (11) 1985-1996
- 29 Grunewald S, Klug LR, Mühlenberg T. et al. Resistance to avapritinib in PDGFRA-driven GIST is caused by secondary mutations in the PDGFRA kinase domain. Cancer Discov 2021; 11 (01) 108-125
- 30 Teuber A, Schulz T, Fletcher BS. et al. Avapritinib-based SAR studies unveil a binding pocket in KIT and PDGFRA. Nat Commun 2024; 15 (01) 63
- 31 Apsel Winger B, Cortopassi WA, Garrido Ruiz D. et al. ATP-competitive inhibitors midostaurin and avapritinib have distinct resistance profiles in exon 17-mutant KIT. Cancer Res 2019; 79 (16) 4283-4292
- 32 Heinrich MC, Griffith D, McKinley A. et al. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res 2012; 18 (16) 4375-4384
- 33 Bollag G. Abstract IA32: Optimizing kinase inhibitors to treat cancer. Cancer Res 2016; 76 (3, supplement): IA32
- 34 Gebreyohannes YK, Burton EA, Wozniak A. et al. PLX9486 shows anti-tumor efficacy in patient-derived, tyrosine kinase inhibitor-resistant KIT-mutant xenograft models of gastrointestinal stromal tumors. Clin Exp Med 2019; 19 (02) 201-210
- 35 Wagner AJ, Severson PL, Shields AF. et al. Association of combination of conformation-specific KIT inhibitors with clinical benefit in patients with refractory gastrointestinal stromal tumors: a phase 1b/2a nonrandomized clinical trial. JAMA Oncol 2021; 7 (09) 1343-1350
- 36 Kettle JG, Anjum R, Barry E. et al. Discovery of N-(4-[5-fluoro-7-(2-methoxyethoxy)quinazolin-4-yl]aminophenyl)-2-[4-(propan-2-yl)-1 H-1,2,3-triazol-1-yl]acetamide (AZD3229), a potent Pan-KIT mutant inhibitor for the treatment of gastrointestinal stromal tumors. J Med Chem 2018; 61 (19) 8797-8810
- 37 Plé PA, Jung F, Ashton S. et al. Discovery of AZD2932, a new quinazoline ether inhibitor with high affinity for VEGFR-2 and PDGFR tyrosine kinases. Bioorg Med Chem Lett 2012; 22 (01) 262-266
- 38 Plé PA, Jung F, Ashton S. et al. Discovery of new quinoline ether inhibitors with high affinity and selectivity for PDGFR tyrosine kinases. Bioorg Med Chem Lett 2012; 22 (09) 3050-3055
- 39 Banks E, Grondine M, Bhavsar D. et al. Discovery and pharmacological characterization of AZD3229, a potent KIT/PDGFRα inhibitor for treatment of gastrointestinal stromal tumors. Sci Transl Med 2020; 12 (541) eaaz2481
- 40 Rivera VM, Huang WS, Lu MR, Pritchard JR, Dalgarno D, Shakespeare WC. Abstract 1292: Preclinical characterization of THE-630, a next-generation inhibitor for KIT-mutant gastrointestinal stromal tumors (GIST). Cancer Res 2021; 81 (13, supplement): 1292
- 41 Blum A, Dorsch D, Linde N. et al. Identification of M4205—a highly selective inhibitor of KIT mutations for treatment of unresectable metastatic or recurrent gastrointestinal stromal tumors. J Med Chem 2023; 66 (04) 2386-2395
- 42 Drilon A, Nagasubramanian R, Blake JF. et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov 2017; 7 (09) 963-972
- 43 Drilon A, Ou SI, Cho BC. et al. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent- front mutations. Cancer Discov 2018; 8 (10) 1227-1236
- 44 Huang WS, Metcalf CA, Sundaramoorthi R. et al. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenylbenzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J Med Chem 2010; 53 (12) 4701-4719
- 45 Zhou Y, Xiang S, Yang F, Lu X. Targeting gatekeeper mutations for kinase drug discovery. J Med Chem 2022; 65 (23) 15540-15558